Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Express your answer using positive exponents.\newline2d2d3\frac{2d}{2d^3}

Full solution

Q. Simplify. Express your answer using positive exponents.\newline2d2d3\frac{2d}{2d^3}
  1. Simplify expression by dividing: Simplify the expression 2d2d3\frac{2d}{2d^3} by dividing the coefficients and subtracting the exponents of like bases.\newlineWhen dividing powers with the same base, we subtract the exponents.\newline2d2d3=22×d1d3\frac{2d}{2d^3} = \frac{2}{2} \times \frac{d^1}{d^3}
  2. Divide the coefficients: Divide the coefficients. 22=1\frac{2}{2} = 1
  3. Subtract exponents of dd: Subtract the exponents of dd.d1d3=d(13)=d2\frac{d^1}{d^3} = d^{(1-3)} = d^{-2}Since we want to express the answer using positive exponents, we take the reciprocal of d2d^{-2} to make the exponent positive.d2=1d2d^{-2} = \frac{1}{d^2}
  4. Combine the results: Combine the results from Step 22 and Step 33.\newline1×1d2=1d21 \times \frac{1}{d^2} = \frac{1}{d^2}

More problems from Multiply powers: variable bases

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 9 months ago