Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Express your answer using exponents.

(t^(-6)u^(2)v^(8))^(-6)

Simplify. Express your answer using exponents.\newline(t6u2v8)6 \left(t^{-6} u^{2} v^{8}\right)^{-6}

Full solution

Q. Simplify. Express your answer using exponents.\newline(t6u2v8)6 \left(t^{-6} u^{2} v^{8}\right)^{-6}
  1. Identify Operation: Identify the operation to be performed on the exponents.\newlineWhen raising a power to a power, we multiply the exponents.
  2. Apply Power: Apply the power to each exponent inside the parentheses.\newline(t6u2v8)6(t^{-6}u^{2}v^{8})^{-6} becomes t(6×6)×u(2×6)×v(8×6).t^{(-6 \times -6)} \times u^{(2 \times -6)} \times v^{(8 \times -6)}.
  3. Perform Multiplication: Perform the multiplication of the exponents.\newlinet(6×6)t^{(-6 \times -6)} becomes t36t^{36}.\newlineu(2×6)u^{(2 \times -6)} becomes u12u^{-12}.\newlinev(8×6)v^{(8 \times -6)} becomes v48v^{-48}.
  4. Express Exponents: Express the negative exponents as positive exponents.\newlineSince u12u^{-12} and v48v^{-48} have negative exponents, we can write them as 1u12\frac{1}{u^{12}} and 1v48\frac{1}{v^{48}} respectively.
  5. Combine Results: Combine the results to express the final answer.\newlineThe simplified expression is t36×1u12×1v48t^{36} \times \frac{1}{u^{12}} \times \frac{1}{v^{48}}, or t36u12v48\frac{t^{36}}{u^{12}v^{48}}.

More problems from Simplify exponential expressions using exponent rules