Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify 
e^(-ln 6)
Answer:

Simplify eln6 e^{-\ln 6} \newlineAnswer:

Full solution

Q. Simplify eln6 e^{-\ln 6} \newlineAnswer:
  1. Use Inverse Property: We know that e(lnx)=xe^{(\ln x)} = x for any xx, because the exponential function exe^x and the natural logarithm ln(x)\ln(x) are inverse functions. Therefore, e(lnx)=1(e(lnx))=1x.e^{(-\ln x)} = \frac{1}{(e^{(\ln x)})} = \frac{1}{x}.
  2. Apply Property to Expression: Now, apply this property to our expression: eln6=1eln6e^{-\ln 6} = \frac{1}{e^{\ln 6}}.
  3. Simplify Expression: Using the property from step 11, we simplify eln6e^{\ln 6} to just 66: eln6=16e^{-\ln 6} = \frac{1}{6}.

More problems from Simplify variable expressions using properties