Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify.\newlinea. (x6y4)32(x3y12)23(x9y6)÷(x2y13)\frac{(x^{6}y^{4})^{\frac{3}{2}}}{(x^{-3}y^{-\frac{1}{2}})^{\frac{2}{3}}}(x^{9}y^{6})\div(x^{-2}y^{-\frac{1}{3}})

Full solution

Q. Simplify.\newlinea. (x6y4)32(x3y12)23(x9y6)÷(x2y13)\frac{(x^{6}y^{4})^{\frac{3}{2}}}{(x^{-3}y^{-\frac{1}{2}})^{\frac{2}{3}}}(x^{9}y^{6})\div(x^{-2}y^{-\frac{1}{3}})
  1. Simplify first part: First, we will simplify each part of the expression separately using the properties of exponents.\newlineFor the first part, ((x6y4)(3)/(2))((x^{6}y^{4})^{(3)/(2)}), we apply the power of a power rule, which states that (am)n=amn(a^{m})^{n} = a^{m*n}.\newline((x6y4)(3)/(2))=x6(3/2)y4(3/2)=x9y6((x^{6}y^{4})^{(3)/(2)}) = x^{6*(3/2)} * y^{4*(3/2)} = x^{9} * y^{6}
  2. Simplify second part: For the second part, ((x3y12)23)((x^{-3}y^{-\frac{1}{2}})^{\frac{2}{3}}), we again apply the power of a power rule.\newline((x3y12)23)=x3(23)×y12(23)=x2×y13((x^{-3}y^{-\frac{1}{2}})^{\frac{2}{3}}) = x^{-3*(\frac{2}{3})} \times y^{-\frac{1}{2}*(\frac{2}{3})} = x^{-2} \times y^{-\frac{1}{3}}
  3. Simplify third part: For the third part, (x9y6)/(x2y13)(x^{9}y^{6})/(x^{-2}y^{-\frac{1}{3}}), we use the quotient of powers rule, which states that am/an=amna^{m} / a^{n} = a^{m-n}.(x9y6)/(x2y13)=x9(2)y6(13)=x11y193(x^{9}y^{6})/(x^{-2}y^{-\frac{1}{3}}) = x^{9-(-2)} \cdot y^{6-(-\frac{1}{3})} = x^{11} \cdot y^{\frac{19}{3}}
  4. Combine simplified parts: Now we will combine the simplified parts of the expression.\newline(x9y6x2y(13))(x11y193)=x9+2y6+13x11y193\left(\frac{x^9 \cdot y^6}{x^{-2} \cdot y^{-\left(\frac{1}{3}\right)}}\right) \cdot \left(x^{11} \cdot y^{\frac{19}{3}}\right) = x^{9+2} \cdot y^{6+\frac{1}{3}} \cdot x^{11} \cdot y^{\frac{19}{3}}
  5. Combine like terms: We combine like terms by adding the exponents of the same base. x(9+2+11)y(6+13+193)=x22y(6+203)=x22y(183+203)=x22y383x^{(9+2+11)} * y^{(6+\frac{1}{3}+\frac{19}{3})} = x^{22} * y^{(6+\frac{20}{3})} = x^{22} * y^{(\frac{18}{3}+\frac{20}{3})} = x^{22} * y^{\frac{38}{3}}
  6. Final simplification: Finally, we simplify the exponent for yy by adding the fractions.y(183+203)=y383y^{(\frac{18}{3}+\frac{20}{3})} = y^{\frac{38}{3}}

More problems from Find derivatives of using multiple formulae