Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify:

(-3x^(2))^(3)
Answer:

Simplify:\newline(3x2)3 \left(-3 x^{2}\right)^{3} \newlineAnswer:

Full solution

Q. Simplify:\newline(3x2)3 \left(-3 x^{2}\right)^{3} \newlineAnswer:
  1. Apply Power Rule: Apply the power of a power rule, which states that a^m)^n = a^{m*n}\. In this case, we have \$\left(-3x^2\right)^3, so we need to raise both (-3\)\ and \x^22\ to the power of (3\)\. (3x2)3=(3)3(x2)3(-3x^2)^3 = (-3)^3 * (x^2)^3
  2. Calculate Cubes: Calculate the cube of 3-3 and the cube of x2x^2 separately.\newline(3)3=3×3×3=27(-3)^3 = -3 \times -3 \times -3 = -27\newline(x2)3=x(2×3)=x6(x^2)^3 = x^{(2\times3)} = x^6
  3. Combine Results: Combine the results from Step 22 to get the final simplified expression.\newline27×x6-27 \times x^6

More problems from Simplify variable expressions using properties