Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

simplify\newline \newlinecot2xcos2xcot2xcos2x\frac{\cot^{2}x\cos^{2}x}{\cot^{2}x-\cos^{2}x}

Full solution

Q. simplify\newline \newlinecot2xcos2xcot2xcos2x\frac{\cot^{2}x\cos^{2}x}{\cot^{2}x-\cos^{2}x}
  1. Recall Trigonometric Identities: Let's start by recalling the trigonometric identities that relate cotangent and cosine:\newlinecot(x)=1tan(x)\cot(x) = \frac{1}{\tan(x)} and tan(x)=sin(x)cos(x)\tan(x) = \frac{\sin(x)}{\cos(x)}, so cot(x)=cos(x)sin(x)\cot(x) = \frac{\cos(x)}{\sin(x)}.\newlineTherefore, cot2(x)=cos2(x)sin2(x)\cot^2(x) = \frac{\cos^2(x)}{\sin^2(x)}.\newlineNow let's rewrite the expression using these identities.
  2. Substitute and Rewrite Expression: Substitute cot2(x)\cot^2(x) with cos2(x)sin2(x)\frac{\cos^2(x)}{\sin^2(x)} in the expression:\newline$(\cot^\(2\)(x) \cdot \cos^\(2\)(x)) / (\cot^\(2\)(x) - \cos^\(2\)(x)) = \left(\frac{\cos^\(2\)(x)}{\sin^\(2\)(x)} \cdot \cos^\(2\)(x)\right) / \left(\frac{\cos^\(2\)(x)}{\sin^\(2\)(x)} - \cos^\(2\)(x)\right).
  3. Simplify Numerator and Denominator: Now, let's simplify the numerator and the denominator separately:\(\newline\)Numerator: \((\cos^2(x)/\sin^2(x)) \cdot \cos^2(x) = \cos^4(x)/\sin^2(x)\).\(\newline\)Denominator: \((\cos^2(x)/\sin^2(x)) - \cos^2(x) = \cos^2(x)/\sin^2(x) - (\cos^2(x) \cdot \sin^2(x))/\sin^2(x) = (\cos^2(x) - \cos^2(x) \cdot \sin^2(x))/\sin^2(x)\).
  4. Further Simplify Denominator: Simplify the denominator further: \(\newline\)\((\cos^2(x) - \cos^2(x) \sin^2(x))/\sin^2(x) = \cos^2(x)(1 - \sin^2(x))/\sin^2(x)\).\(\newline\)Recall the Pythagorean identity: \(\sin^2(x) + \cos^2(x) = 1\), so \(1 - \sin^2(x) = \cos^2(x)\).
  5. Apply Pythagorean Identity: Substitute \(1 - \sin^2(x)\) with \(\cos^2(x)\) in the denominator:\(\newline\)\(\cos^2(x)(1 - \sin^2(x))/\sin^2(x) = \cos^2(x) \cdot \cos^2(x)/\sin^2(x) = \cos^4(x)/\sin^2(x)\).
  6. Final Simplification: Now we have the same expression in both the numerator and the denominator: \(\newline\)\((\frac{\cos^4(x)}{\sin^2(x)}) / (\frac{\cos^4(x)}{\sin^2(x)})\).\(\newline\)This simplifies to \(1\), because any non-zero number divided by itself is \(1\).

More problems from Find derivatives of using multiple formulae