Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the expression that is equivalent to 
(2x-2)^((4)/(5))

root(5)((2x-2)^(4))

root(4)((2x-2)^(5))

(1)/(root(5)((2x-2)^(4)))

(1)/(root(4)((2x-2)^(5)))

Select the expression that is equivalent to (2x2)45 (2 x-2)^{\frac{4}{5}} \newline(2x2)45 \sqrt[5]{(2 x-2)^{4}} \newline(2x2)54 \sqrt[4]{(2 x-2)^{5}} \newline1(2x2)45 \frac{1}{\sqrt[5]{(2 x-2)^{4}}} \newline1(2x2)54 \frac{1}{\sqrt[4]{(2 x-2)^{5}}}

Full solution

Q. Select the expression that is equivalent to (2x2)45 (2 x-2)^{\frac{4}{5}} \newline(2x2)45 \sqrt[5]{(2 x-2)^{4}} \newline(2x2)54 \sqrt[4]{(2 x-2)^{5}} \newline1(2x2)45 \frac{1}{\sqrt[5]{(2 x-2)^{4}}} \newline1(2x2)54 \frac{1}{\sqrt[4]{(2 x-2)^{5}}}
  1. Understand Notation: We need to understand the notation of the given expression. The exponent 45\frac{4}{5} can be interpreted as raising the base 2x22x-2 to the 4th4^{\text{th}} power and then taking the 5th5^{\text{th}} root of the result, or equivalently, taking the 5th5^{\text{th}} root of the base 2x22x-2 and then raising it to the 4th4^{\text{th}} power. This is because of the property of exponents that states amna^{\frac{m}{n}} = extroot(n)(am) ext{root}(n)(a^m) = (extroot(n)(a))m( ext{root}(n)(a))^m.
  2. Analyze Options: Now let's analyze the given options one by one to see which one matches the interpretation from Step 11.\newlineOption 11: (2x2)45\sqrt[5]{(2x-2)^{4}}\newlineThis option represents taking the 55th root of (2x2)4(2x-2)^{4}, which is exactly the interpretation of the original expression (2x2)45(2x-2)^{\frac{4}{5}}.
  3. Option 11: Option 22: (2x2)54\sqrt[4]{(2x-2)^{5}}\newlineThis option represents taking the 4th4^{\text{th}} root of (2x2)(2x-2) raised to the 5th5^{\text{th}} power. This does not match the original expression's exponent of (45)(\frac{4}{5}).
  4. Option 22: Option 33: (1)/(2x2)45(1)/\sqrt[5]{(2x-2)^{4}} This option represents the reciprocal of the 55th root of (2x2)(2x-2) raised to the 44th power. This is not equivalent to the original expression because it is the inverse of what we are looking for.
  5. Option 33: Option 44: 1(2x2)54\frac{1}{\sqrt[4]{(2x-2)^5}} This option represents the reciprocal of the 4th4^{\text{th}} root of (2x2)(2x-2) raised to the 5th5^{\text{th}} power. Again, this is not equivalent to the original expression because it is the inverse and also does not match the 45\frac{4}{5} exponent.
  6. Option 44: Based on the analysis of the options, we can conclude that the expression equivalent to (2x2)45(2x-2)^{\frac{4}{5}} is (2x2)45\sqrt[5]{(2x-2)^{4}}, which is Option 11.

More problems from Find derivatives of using multiple formulae