Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the expression that is equivalent to 
(1)/((3x^(2)-5)^(-(2)/(5)))

sqrt((3x^(2)-5)^(5))

root(5)((3x^(2)-5)^(2))

(1)/(sqrt((3x^(2)-5)^(5)))

(1)/(root(5)((3x^(2)-5)^(2)))

Select the expression that is equivalent to 1(3x25)25 \frac{1}{\left(3 x^{2}-5\right)^{-\frac{2}{5}}} \newline(3x25)5 \sqrt{\left(3 x^{2}-5\right)^{5}} \newline(3x25)25 \sqrt[5]{\left(3 x^{2}-5\right)^{2}} \newline1(3x25)5 \frac{1}{\sqrt{\left(3 x^{2}-5\right)^{5}}} \newline1(3x25)25 \frac{1}{\sqrt[5]{\left(3 x^{2}-5\right)^{2}}}

Full solution

Q. Select the expression that is equivalent to 1(3x25)25 \frac{1}{\left(3 x^{2}-5\right)^{-\frac{2}{5}}} \newline(3x25)5 \sqrt{\left(3 x^{2}-5\right)^{5}} \newline(3x25)25 \sqrt[5]{\left(3 x^{2}-5\right)^{2}} \newline1(3x25)5 \frac{1}{\sqrt{\left(3 x^{2}-5\right)^{5}}} \newline1(3x25)25 \frac{1}{\sqrt[5]{\left(3 x^{2}-5\right)^{2}}}
  1. Simplify Negative Exponent: To find an equivalent expression, we need to simplify the given expression. The negative exponent indicates that the expression is the reciprocal of the base raised to the positive exponent.\newline(1)/((3x25)(2)/(5))=(3x25)2/5(1)/((3x^{2}-5)^{-(2)/(5)}) = (3x^{2}-5)^{2/5}
  2. Identify Simplified Expression: Now we need to identify which of the provided options matches the simplified expression. The expression (3x25)25(3x^{2}-5)^{\frac{2}{5}} can be written as the 5th5^{\text{th}} root of (3x25)(3x^{2}-5) squared, which is the same as (3x25)25\sqrt[5]{(3x^{2}-5)^{2}}.
  3. Eliminate Incorrect Options: The correct equivalent expression is therefore (3x25)25\sqrt[5]{(3x^{2}-5)^{2}}. We can eliminate the other options as they do not match the simplified expression:\newline- (3x25)5\sqrt{(3x^{2}-5)^{5}} is not equivalent because it represents the square root, not the 5th5^{\text{th}} root.\newline- 1(3x25)5\frac{1}{\sqrt{(3x^{2}-5)^{5}}} is not equivalent because it represents the reciprocal of the square root, not the 5th5^{\text{th}} root.\newline- 1(3x25)25\frac{1}{\sqrt[5]{(3x^{2}-5)^{2}}} is not equivalent because it represents the reciprocal of the 5th5^{\text{th}} root squared, which is not the same as the 5th5^{\text{th}} root of the square.

More problems from Find derivatives of using multiple formulae