Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the expression that is equivalent to 
(1)/((2x^(2)+2)^((3)/(2)))

(1)/(sqrt((2x^(2)+2)^(3)))

sqrt((2x^(2)+2)^(3))

root(3)((2x^(2)+2)^(2))

(1)/(root(3)((2x^(2)+2)^(2)))

Select the expression that is equivalent to 1(2x2+2)32 \frac{1}{\left(2 x^{2}+2\right)^{\frac{3}{2}}} \newline1(2x2+2)3 \frac{1}{\sqrt{\left(2 x^{2}+2\right)^{3}}} \newline(2x2+2)3 \sqrt{\left(2 x^{2}+2\right)^{3}} \newline(2x2+2)23 \sqrt[3]{\left(2 x^{2}+2\right)^{2}} \newline1(2x2+2)23 \frac{1}{\sqrt[3]{\left(2 x^{2}+2\right)^{2}}}

Full solution

Q. Select the expression that is equivalent to 1(2x2+2)32 \frac{1}{\left(2 x^{2}+2\right)^{\frac{3}{2}}} \newline1(2x2+2)3 \frac{1}{\sqrt{\left(2 x^{2}+2\right)^{3}}} \newline(2x2+2)3 \sqrt{\left(2 x^{2}+2\right)^{3}} \newline(2x2+2)23 \sqrt[3]{\left(2 x^{2}+2\right)^{2}} \newline1(2x2+2)23 \frac{1}{\sqrt[3]{\left(2 x^{2}+2\right)^{2}}}
  1. Simplify Expression: We need to simplify the given expression (1)/((2x2+2)(3)/(2))(1)/((2x^{2}+2)^{(3)/(2)}) to match one of the provided options.
  2. Understand Exponent: First, let's understand the exponent (3/2)(3/2). It means that we have a square root and a cube. The square root is the 1/21/2 part, and the cube is the 33 part. So, (2x2+2)(3/2)(2x^{2}+2)^{(3/2)} is the same as taking the square root of (2x2+2)(2x^{2}+2) and then cubing the result.
  3. Rewrite Expression: The expression (1)/((2x2+2)(3)/(2))(1)/((2x^{2}+2)^{(3)/(2)}) can be rewritten as (1)/(2x2+2)3(1)/\sqrt{(2x^{2}+2)^{3}} because taking the square root and then cubing is the same as raising to the power of 3/23/2.
  4. Compare with Options: Now let's compare the rewritten expression with the provided options. The first option is exactly the same as our rewritten expression: (1)/((2x2+2)3)(1)/(\sqrt{(2x^{2}+2)^{3}}).
  5. Option 11: The second option, (2x2+2)3\sqrt{(2x^{2}+2)^{3}}, is not equivalent because it does not have the reciprocal (1/1/) part.
  6. Option 22: The third option, (2x2+2)23\sqrt[3]{(2x^{2}+2)^{2}}, is not equivalent because it represents the cube root of the quantity (2x2+2)2(2x^{2}+2)^{2}, which is not the same as our expression.
  7. Option 33: The fourth option, (1)/((2x2+2)23)(1)/(\sqrt[3]{(2x^{2}+2)^{2}}), is not equivalent because it represents the reciprocal of the cube root of the quantity (2x2+2)2(2x^{2}+2)^{2}, which is different from the cube of the square root in our expression.

More problems from Find derivatives of using multiple formulae