Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

(y^(5)y^(2))/(x^(6)x^(3))

(y^(7))/(x^(9))

(x^(9))/(y^(7))

(1)/(x^(9)y^(3))

x^(9)y^(3)

Select the equivalent expression.\newliney5y2x6x3 \frac{y^{5} y^{2}}{x^{6} x^{3}} \newliney7x9 \frac{y^{7}}{x^{9}} \newlinex9y7 \frac{x^{9}}{y^{7}} \newline1x9y3 \frac{1}{x^{9} y^{3}} \newlinex9y3 x^{9} y^{3}

Full solution

Q. Select the equivalent expression.\newliney5y2x6x3 \frac{y^{5} y^{2}}{x^{6} x^{3}} \newliney7x9 \frac{y^{7}}{x^{9}} \newlinex9y7 \frac{x^{9}}{y^{7}} \newline1x9y3 \frac{1}{x^{9} y^{3}} \newlinex9y3 x^{9} y^{3}
  1. Apply Exponent Properties: To find the equivalent expression, we need to simplify the given expression using the properties of exponents.
  2. Simplify Numerator: When multiplying powers with the same base, we add the exponents. So for the numerator y5y2y^{5}y^{2}, we add the exponents 55 and 22. \newliney5y2=y5+2=y7y^{5}y^{2} = y^{5+2} = y^{7}
  3. Simplify Denominator: Similarly, for the denominator x6x3x^{6}x^{3}, we add the exponents 66 and 33. \newlinex6x3=x6+3=x9x^{6}x^{3} = x^{6+3} = x^{9}
  4. Combine Simplified Terms: Now we have the simplified form of the numerator and denominator. We can write the entire expression as: \newline(y5y2)/(x6x3)=y7/x9(y^{5}y^{2})/(x^{6}x^{3}) = y^{7}/x^{9}
  5. Identify Equivalent Expression: Comparing the simplified expression with the given options, we find that the equivalent expression is (y7)/(x9)(y^{7})/(x^{9}).

More problems from Find derivatives of using multiple formulae