Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

(x^(8)y^(-5)y^(-8))/(x^(6))

(1)/(x^(2))

(x^(2))/(y^(13))

(y^(13))/(x^(2))

x^(2)

Select the equivalent expression.\newlinex8y5y8x6 \frac{x^{8} y^{-5} y^{-8}}{x^{6}} \newline1x2 \frac{1}{x^{2}} \newlinex2y13 \frac{x^{2}}{y^{13}} \newliney13x2 \frac{y^{13}}{x^{2}} \newlinex2 x^{2}

Full solution

Q. Select the equivalent expression.\newlinex8y5y8x6 \frac{x^{8} y^{-5} y^{-8}}{x^{6}} \newline1x2 \frac{1}{x^{2}} \newlinex2y13 \frac{x^{2}}{y^{13}} \newliney13x2 \frac{y^{13}}{x^{2}} \newlinex2 x^{2}
  1. Use Exponent Property: To simplify the given expression, we will use the properties of exponents. The first property we will use is that when dividing powers with the same base, we subtract the exponents: am/an=a(mn)a^{m}/a^{n} = a^{(m-n)}.
  2. Simplify xx Term: Applying this property to the xx terms, we get x(86)=x2x^{(8-6)} = x^{2}.
  3. Combine yy Terms: Now, we will combine the yy terms using the property that when we multiply powers with the same base, we add the exponents: am×an=am+na^{m} \times a^{n} = a^{m+n}.
  4. Combine xx and yy Terms: Combining the yy terms, we get y(5+(8))=y13y^{(-5 + (-8))} = y^{-13}.
  5. Rewrite Expression: Putting the simplified xx and yy terms together, we have x2y13x^{2} \cdot y^{-13}.
  6. Rewrite Expression: Putting the simplified xx and yy terms together, we have x2y13x^{2} \cdot y^{-13}.Since y13y^{-13} is in the denominator, we can rewrite the expression as (x2)/(y13)(x^{2})/(y^{13}).

More problems from Find derivatives of using multiple formulae