Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

(x^(-3)x^(2)y^(7))/(y^(6))

(x)/(y)

(y)/(x)

x^(5)y

(1)/(x^(5)y)

Select the equivalent expression.\newlinex3x2y7y6 \frac{x^{-3} x^{2} y^{7}}{y^{6}} \newlinexy \frac{x}{y} \newlineyx \frac{y}{x} \newlinex5y x^{5} y \newline1x5y \frac{1}{x^{5} y}

Full solution

Q. Select the equivalent expression.\newlinex3x2y7y6 \frac{x^{-3} x^{2} y^{7}}{y^{6}} \newlinexy \frac{x}{y} \newlineyx \frac{y}{x} \newlinex5y x^{5} y \newline1x5y \frac{1}{x^{5} y}
  1. Simplify xx terms: To find the equivalent expression, we need to simplify the given expression using the properties of exponents.
  2. Simplify yy terms: First, we simplify the xx terms by adding the exponents since they have the same base and are being multiplied.x(3)×x(2)=x(3+2)=x(1).x^{(-3)} \times x^{(2)} = x^{(-3 + 2)} = x^{(-1)}.
  3. Combine xx and yy terms: Next, we simplify the yy terms by subtracting the exponents since y7y^{7} is being divided by y6y^{6}.y7y6=y76=y1=y\frac{y^{7}}{y^{6}} = y^{7 - 6} = y^{1} = y.
  4. Final equivalent expression: Now we combine the simplified xx and yy terms.(x(1))y=(1x)y.(x^{(-1)}) \cdot y = \left(\frac{1}{x}\right) \cdot y.
  5. Final equivalent expression: Now we combine the simplified xx and yy terms.(x(1))y=(1x)y(x^{(-1)}) \cdot y = (\frac{1}{x}) \cdot y.The expression (1x)y(\frac{1}{x}) \cdot y is equivalent to yx\frac{y}{x}.Therefore, the equivalent expression is yx\frac{y}{x}.

More problems from Find derivatives of using multiple formulae