Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

(×^(6)y^(-7))/(y^(-1))

(x^(7))/(y^(6))

(x^(5))/(y^(6))

(y^(6))/(x^(7))

(y^(6))/(x^(5))

Select the equivalent expression.\newlinexx6y7y1 \frac{x x^{6} y^{-7}}{y^{-1}} \newlinex7y6 \frac{x^{7}}{y^{6}} \newlinex5y6 \frac{x^{5}}{y^{6}} \newliney6x7 \frac{y^{6}}{x^{7}} \newliney6x5 \frac{y^{6}}{x^{5}}

Full solution

Q. Select the equivalent expression.\newlinexx6y7y1 \frac{x x^{6} y^{-7}}{y^{-1}} \newlinex7y6 \frac{x^{7}}{y^{6}} \newlinex5y6 \frac{x^{5}}{y^{6}} \newliney6x7 \frac{y^{6}}{x^{7}} \newliney6x5 \frac{y^{6}}{x^{5}}
  1. Apply Quotient Rule: To simplify the expression (x6y7)/(y1)(x^{6}y^{-7})/(y^{-1}), we need to use the properties of exponents, specifically the quotient rule which states that when dividing like bases, you subtract the exponents.
  2. Simplify y Exponents: We apply the quotient rule to the y terms: y7/y1=y7(1)=y7+1=y6y^{-7} / y^{-1} = y^{-7 - (-1)} = y^{-7 + 1} = y^{-6}.
  3. Rewrite Expression: Now we rewrite the expression with the simplified exponent for yy: x6y7y1=x6y6\frac{x^{6}y^{-7}}{y^{-1}} = x^{6}y^{-6}.
  4. Use Reciprocal Property: Since y6y^{-6} is the same as 1/(y6)1/(y^{6}), we can rewrite the expression as: x6(1/(y6))=(x6)/(y6)x^{6} * (1/(y^{6})) = (x^{6})/(y^{6}).
  5. Final Simplified Expression: The final simplified expression is x6y6\frac{x^{6}}{y^{6}}. This matches one of the answer choices provided.

More problems from Find derivatives of using multiple formulae