Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select all the expressions that are equivalent to 56×535^{-6} \times 5^{-3}. \newlineMulti-select Choices:\newline(A) 595^{-9}\newline(B) 159\frac{1}{5^{9}}\newline(C) 5185^{18}\newline(D) 159\frac{1}{5^{-9}}

Full solution

Q. Select all the expressions that are equivalent to 56×535^{-6} \times 5^{-3}. \newlineMulti-select Choices:\newline(A) 595^{-9}\newline(B) 159\frac{1}{5^{9}}\newline(C) 5185^{18}\newline(D) 159\frac{1}{5^{-9}}
  1. Use Exponent Properties: To find the equivalent expressions, we need to use the properties of exponents. When multiplying two powers with the same base, we add the exponents.\newline56×53=5(6+3)5^{-6} \times 5^{-3} = 5^{(-6 + -3)}
  2. Add Exponents: Now we perform the addition of the exponents. 5(6+3)=595^{(-6 + -3)} = 5^{-9}
  3. Rewrite Negative Exponent: We can rewrite the negative exponent as a reciprocal to find an equivalent expression. 59=1595^{-9} = \frac{1}{5^9}
  4. Check Given Options: Now we check the given options to see which ones match our findings.\newline(A) 595^{-9} is equivalent because it is the result of adding the exponents.\newline(B) 159\frac{1}{5^9} is equivalent because it is the reciprocal form of 595^{-9}.\newline(C) 5185^{18} is not equivalent because it does not follow the rule of adding exponents for multiplication.\newline(D) 159\frac{1}{5^{-9}} is not equivalent because it is the reciprocal of the reciprocal of 595^{-9}, which would give us 595^9, not 595^{-9}.

More problems from Find derivatives of using multiple formulae