Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select all of the equations below that are equivalent to:\newline10=32v-10 = -32 - v\newlineUse properties of equality.\newlineMulti-select Choices:\newline(A) 310=963v3 \cdot -10 = -96 - 3v\newline(B) 210=642v2 \cdot -10 = -64 - 2v\newline(C) 210=64(2v)-2 \cdot -10 = 64 - (-2v)\newline(D) 100=(32v)10-100 = (-32 - v) \cdot 10

Full solution

Q. Select all of the equations below that are equivalent to:\newline10=32v-10 = -32 - v\newlineUse properties of equality.\newlineMulti-select Choices:\newline(A) 310=963v3 \cdot -10 = -96 - 3v\newline(B) 210=642v2 \cdot -10 = -64 - 2v\newline(C) 210=64(2v)-2 \cdot -10 = 64 - (-2v)\newline(D) 100=(32v)10-100 = (-32 - v) \cdot 10
  1. Check Equivalence: To determine if the equations are equivalent, we need to check if the operations applied to both sides of the original equation are valid and maintain equality.\newlineLet's start with option (A):\newline(A) 310=963v3 \cdot -10 = -96 - 3v\newlineWe need to check if multiplying both sides of the original equation by 33 gives us this result.
  2. Option (A): Multiply both sides of the original equation by 33:3×(10)=3×(32v)3 \times (\text{–}10) = 3 \times (\text{–}32 - v)30=963v\text{–}30 = \text{–}96 - 3vThis matches option (A), so (A) is equivalent.
  3. Option (B): Now let's check option (B):\newline(B) 210=642v2 \cdot -10 = -64 - 2v\newlineWe need to check if multiplying both sides of the original equation by 22 gives us this result.
  4. Option (C: Multiply both sides of the original equation by 22: \newline2×(10)=2×(32v)2 \times (-10) = 2 \times (-32 - v)\newline20=642v-20 = -64 - 2v\newlineThis matches option (B), so (B) is equivalent.
  5. Option (C: Multiply both sides of the original equation by 22: \newline2×(10)=2×(32v)2 \times (-10) = 2 \times (-32 - v) \newline20=642v-20 = -64 - 2v \newlineThis matches option (B), so (B) is equivalent.Next, let's check option (C): \newline(C) 210=64(2v)-2 \cdot -10 = 64 - (-2v) \newlineWe need to check if multiplying both sides of the original equation by 2-2 gives us this result.
  6. Option (C: Multiply both sides of the original equation by 22: \newline2×(10)=2×(32v)2 \times (\text{–}10) = 2 \times (\text{–}32 - v) \newline20=642v\text{–}20 = \text{–}64 - 2v \newlineThis matches option (B), so (B) is equivalent.Next, let's check option (C): \newline(C) 210=64(2v)\text{–}2 \cdot \text{–}10 = 64 - (\text{–}2v) \newlineWe need to check if multiplying both sides of the original equation by 2\text{–}2 gives us this result.Multiply both sides of the original equation by 2\text{–}2: \newline2×(10)=2×(32v)\text{–}2 \times (\text{–}10) = \text{–}2 \times (\text{–}32 - v) \newline20=64+2v20 = 64 + 2v \newlineThis does not match option (C) because the sign in front of 2v2v should be positive, not negative.

More problems from Identify equivalent equations