Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Determine whether the statement is true or false.

f(x)=(1)/(1-x)=sum_(n=0)^(oo)x^(n) and 
g(x)=(1)/(1-x^(2))=sum_(n=0)^(oo)x^(2n), then 
f(x)g(x)=sum_(n=0)^(oo)x^(n)x^(2n)=sum_(n=0)^(oo)x^(3n)
True
False

Determine whether the statement is true or false.\newlinef(x)=11x=n=0xn f(x)=\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n} and g(x)=11x2=n=0x2n g(x)=\frac{1}{1-x^{2}}=\sum_{n=0}^{\infty} x^{2 n} , then f(x)g(x)=n=0xnx2n=n=0x3n f(x) g(x)=\sum_{n=0}^{\infty} x^{n} x^{2 n}=\sum_{n=0}^{\infty} x^{3 n} \newlineTrue\newlineFalse

Full solution

Q. Determine whether the statement is true or false.\newlinef(x)=11x=n=0xn f(x)=\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n} and g(x)=11x2=n=0x2n g(x)=\frac{1}{1-x^{2}}=\sum_{n=0}^{\infty} x^{2 n} , then f(x)g(x)=n=0xnx2n=n=0x3n f(x) g(x)=\sum_{n=0}^{\infty} x^{n} x^{2 n}=\sum_{n=0}^{\infty} x^{3 n} \newlineTrue\newlineFalse
  1. Evaluate f(x)f(x): Evaluate f(x)=11xf(x) = \frac{1}{1-x} as a power series.\newlinef(x)=n=0xnf(x) = \sum_{n=0}^{\infty}x^{n}
  2. Evaluate g(x)g(x): Evaluate g(x)=11x2g(x) = \frac{1}{1-x^{2}} as a power series.\newlineg(x)=n=0x2ng(x) = \sum_{n=0}^{\infty}x^{2n}
  3. Multiply f(x)f(x) and g(x)g(x): Multiply f(x)f(x) and g(x)g(x) to find f(x)g(x)f(x)g(x).\newlinef(x)g(x) = \left(\sum_{n=\(0\)}^{\infty}x^{n}\right)\left(\sum_{m=\(0\)}^{\infty}x^{\(2\)m}\right)
  4. Expand the product: Expand the product of the two series. \(f(x)g(x) = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} x^{n+2m}
  5. Simplify the expression: Simplify the expression for the product. \newlinef(x)g(x)=k=0xkf(x)g(x) = \sum_{k=0}^{\infty} x^{k} where k=n+2mk = n + 2m, kk takes values 0,1,2,3,0, 1, 2, 3, \ldots

More problems from Find derivatives of using multiple formulae