Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Rewrite the following in the form 
log(c).

log(15)-log(3)

Rewrite the following in the form log(c) \log (c) .\newlinelog(15)log(3) \log (15)-\log (3)

Full solution

Q. Rewrite the following in the form log(c) \log (c) .\newlinelog(15)log(3) \log (15)-\log (3)
  1. Property Simplification: log(15)log(3)\log(15) - \log(3)\newlineWhich property can be used to simplify the expression?\newlineDifference of logarithms of two numbers equals the logarithm of their division.\newlineQuotient property: logbPlogbQ=logb(PQ)\log_b P - \log_b Q = \log_b \left(\frac{P}{Q}\right)
  2. Apply Quotient Property: log(15)log(3)\log(15) - \log(3)\newlineApply the quotient property of logarithms.\newlinelog(15)log(3)=log(153)\log(15) - \log(3) = \log\left(\frac{15}{3}\right)
  3. Calculate Division: Calculate 15/315/3.\newlineDivide 1515 by 33 to get 55.\newline15/3=515/3 = 5
  4. Replace with 55: log(153)\log(\frac{15}{3})\newlineReplace 153\frac{15}{3} with 55.\newlinelog(153)=log(5)\log(\frac{15}{3}) = \log(5)

More problems from Evaluate logarithms using properties