Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Rewrite the following in the form 
log(c).

log(10)-log(2)

Rewrite the following in the form log(c) \log (c) .\newlinelog(10)log(2) \log (10)-\log (2)

Full solution

Q. Rewrite the following in the form log(c) \log (c) .\newlinelog(10)log(2) \log (10)-\log (2)
  1. Identify properties of logarithms: Identify the properties of logarithms that can be used to simplify the expression log(10)log(2)\log(10) - \log(2).\newlineThe difference of logarithms of two numbers equals the logarithm of their quotient.\newlineQuotient property: logb(P)logb(Q)=logb(PQ)\log_b (P) - \log_b (Q) = \log_b (\frac{P}{Q})
  2. Apply quotient property: Apply the quotient property of logarithms to log(10)log(2)\log(10) - \log(2). \newlinelog(10)log(2)=log(102)\log(10) - \log(2) = \log\left(\frac{10}{2}\right)
  3. Calculate quotient: Calculate the quotient 10/210/2.\newline10/2=510/2 = 5
  4. Rewrite expression using result: Rewrite the expression using the result from Step 33. log(10)log(2)=log(102)=log(5)\log(10) - \log(2) = \log\left(\frac{10}{2}\right) = \log(5)

More problems from Evaluate logarithms using properties