Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Rewrite the expression in the form 
z^(n).
Write the exponent as an integer, fraction, or an exact decimal (not a mixed number).

root(5)(z^(4)z^(-(3)/(2)))=◻_(◻)^("+х ")

Rewrite the expression in the form zn z^{n} .\newlineWrite the exponent as an integer, fraction, or an exact decimal (not a mixed number).\newlinez4z325= \sqrt[5]{z^{4} z^{-\frac{3}{2}}}=\square

Full solution

Q. Rewrite the expression in the form zn z^{n} .\newlineWrite the exponent as an integer, fraction, or an exact decimal (not a mixed number).\newlinez4z325= \sqrt[5]{z^{4} z^{-\frac{3}{2}}}=\square
  1. Identify expression and operation: Identify the expression and the operation to be performed.\newlineThe expression is z4z325\sqrt[5]{z^{4}z^{-\frac{3}{2}}}. We need to simplify the expression inside the root and then apply the fifth root.
  2. Combine exponents of zz: Combine the exponents of zz using the property of exponents that states zazb=za+bz^a \cdot z^b = z^{a+b}.z4z32=z432z^{4} \cdot z^{-\frac{3}{2}} = z^{4 - \frac{3}{2}}
  3. Convert mixed number to improper fraction: Convert the mixed number to an improper fraction to combine the exponents easily. 44 can be written as 82\frac{8}{2}, so the expression becomes z8232z^{\frac{8}{2} - \frac{3}{2}}.
  4. Subtract exponents: Subtract the exponents.\newlinez8232=z52z^{\frac{8}{2} - \frac{3}{2}} = z^{\frac{5}{2}}
  5. Apply fifth root: Apply the fifth root to the expression.\newlinez525=(z52)15\sqrt[5]{z^{\frac{5}{2}}} = (z^{\frac{5}{2}})^{\frac{1}{5}}
  6. Simplify expression using exponent property: Use the property of exponents (am/n)p=am/np(a^{m/n})^p = a^{m/n \cdot p} to simplify the expression.(z5/2)1/5=z(5/2)(1/5)(z^{5/2})^{1/5} = z^{(5/2) \cdot (1/5)}
  7. Multiply exponents: Multiply the exponents. z(52)(15)=z510z^{(\frac{5}{2}) \cdot (\frac{1}{5})} = z^{\frac{5}{10}}
  8. Simplify exponent: Simplify the exponent. z510=z12z^{\frac{5}{10}} = z^{\frac{1}{2}}