Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Rewrite the expression in the form 
x^(n).
Write the exponent as an integer, fraction, or an exact decimal (not a mixed number).

root(4)((x^(2))/(x^((2)/(3))))=◻^(◻-x)

Rewrite the expression in the form xn x^{n} .\newlineWrite the exponent as an integer, fraction, or an exact decimal (not a mixed number).\newlinex2x234= \sqrt[4]{\frac{x^{2}}{x^{\frac{2}{3}}}}=\square

Full solution

Q. Rewrite the expression in the form xn x^{n} .\newlineWrite the exponent as an integer, fraction, or an exact decimal (not a mixed number).\newlinex2x234= \sqrt[4]{\frac{x^{2}}{x^{\frac{2}{3}}}}=\square
  1. Identify expression and root type: Identify the expression and the type of root.\newlineThe expression is x2x234\sqrt[4]{\frac{x^2}{x^{\frac{2}{3}}}}, which means we have a fourth root of a fraction where the numerator is xx squared and the denominator is xx raised to the power of two-thirds.
  2. Rewrite as exponent: Rewrite the fourth root as an exponent.\newlineThe fourth root of a number can be written as raising that number to the power of 1/41/4.\newlineSo, (x2x23)4\sqrt[4]{\left(\frac{x^{2}}{x^{\frac{2}{3}}}\right)} can be written as (x2x23)1/4\left(\frac{x^{2}}{x^{\frac{2}{3}}}\right)^{1/4}.
  3. Simplify expression inside root: Use the properties of exponents to simplify the expression inside the root.\newlineWhen dividing like bases with exponents, we subtract the exponents: xa/xb=xabx^{a} / x^{b} = x^{a-b}.\newlineSo, (x2)/(x(2)/(3))(x^{2})/(x^{(2)/(3)}) simplifies to x2(2/3)x^{2 - (2/3)}.
  4. Calculate exponent: Calculate the exponent.\newline223=6323=432 - \frac{2}{3} = \frac{6}{3} - \frac{2}{3} = \frac{4}{3}.\newlineSo, x2x(23)\frac{x^{2}}{x^{\left(\frac{2}{3}\right)}} simplifies to x43x^{\frac{4}{3}}.
  5. Apply fourth root: Apply the fourth root to the simplified expression.\newlineNow we have (x4/3)1/4(x^{4/3})^{1/4}.\newlineWhen raising a power to a power, we multiply the exponents: (xa)b=xab(x^{a})^{b} = x^{a*b}.\newlineSo, (x4/3)1/4(x^{4/3})^{1/4} simplifies to x(4/3)(1/4)x^{(4/3)*(1/4)}.
  6. Calculate new exponent: Calculate the new exponent.\newline(43)×(14)=412=13(\frac{4}{3}) \times (\frac{1}{4}) = \frac{4}{12} = \frac{1}{3}.\newlineSo, (x43)14(x^{\frac{4}{3}})^{\frac{1}{4}} simplifies to x13x^{\frac{1}{3}}.
  7. Write final answer: Write the final answer.\newlineThe expression x2x234\sqrt[4]{\frac{x^{2}}{x^{\frac{2}{3}}}} rewritten in the form xnx^{n} is x13x^{\frac{1}{3}}.