Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Question
What is the particular solution to the differential equation 
(dy)/(dx)=(1+y)/(x) with the initial condition 
y(e)=1?

Question\newlineWhat is the particular solution to the differential equation dydx=1+yx \frac{d y}{d x}=\frac{1+y}{x} with the initial condition y(e)=1? y(e)=1 ?

Full solution

Q. Question\newlineWhat is the particular solution to the differential equation dydx=1+yx \frac{d y}{d x}=\frac{1+y}{x} with the initial condition y(e)=1? y(e)=1 ?
  1. Identify type of differential equation: Step 11: Identify the type of differential equation. We have dydx=1+yx\frac{dy}{dx} = \frac{1+y}{x}. This is a first-order linear differential equation.
  2. Rearrange to separate variables: Step 22: Rearrange the equation to separate variables. dy1+y=dxx\frac{dy}{1+y} = \frac{dx}{x}. This step involves separating the variables yy and xx on different sides of the equation.
  3. Integrate both sides: Step 33: Integrate both sides.\newlineIntegrate left side: dy1+y=ln1+y+C1\int \frac{dy}{1+y} = \ln|1+y| + C_1.\newlineIntegrate right side: dxx=lnx+C2\int \frac{dx}{x} = \ln|x| + C_2.
  4. Combine constants and solve: Step 44: Combine the constants and solve for yy.ln1+y=lnx+C\ln|1+y| = \ln|x| + C, where C=C2C1C = C_2 - C_1.Remove the absolute values (assuming xx and 1+y1+y are positive): 1+y=e(lnx+C)=xeC1+y = e^{(\ln|x| + C)} = x\cdot e^C.
  5. Apply initial condition: Step 55: Apply the initial condition to find CC. Given y(e)=1y(e) = 1, plug in x=ex = e: 1+1=eeC1 + 1 = e \cdot e^C. 2=e(1+C)2 = e^{(1+C)}. Taking natural log on both sides: ln(2)=1+C\ln(2) = 1 + C. C=ln(2)1C = \ln(2) - 1.
  6. Write particular solution: Step 66: Write the particular solution using the value of CC.y=xe(ln(2)1)1.y = x\cdot e^{(\ln(2)-1)} - 1.Simplify: y=x(2e)1.y = x\cdot\left(\frac{2}{e}\right) - 1.

More problems from Find derivatives of logarithmic functions