Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Que: Simplif 
((x^(a))/(x^(b)))^(b+c-a)((x^(c))/(x^(a)))^(c+a-b)((x^(a))/(x^(b)))^(a+b-c)

Simplify: (xaxb)b+ca(xcxa)c+ab(xaxb)a+bc \left(\frac{x^{a}}{x^{b}}\right)^{b+c-a}\left(\frac{x^{c}}{x^{a}}\right)^{c+a-b}\left(\frac{x^{a}}{x^{b}}\right)^{a+b-c}

Full solution

Q. Simplify: (xaxb)b+ca(xcxa)c+ab(xaxb)a+bc \left(\frac{x^{a}}{x^{b}}\right)^{b+c-a}\left(\frac{x^{c}}{x^{a}}\right)^{c+a-b}\left(\frac{x^{a}}{x^{b}}\right)^{a+b-c}
  1. Simplify fractions using exponents: Step 11: Simplify each fraction using the properties of exponents.\newline(xaxb)=xab\left(\frac{x^{a}}{x^{b}}\right) = x^{a-b}\newline(xcxa)=xca\left(\frac{x^{c}}{x^{a}}\right) = x^{c-a}\newline(xaxb)=xab\left(\frac{x^{a}}{x^{b}}\right) = x^{a-b}
  2. Apply exponents to simplified fractions: Step 22: Apply the exponents to the simplified fractions.\newline(x(ab))(b+ca)=x((ab)(b+ca))(x^{(a-b)})^{(b+c-a)} = x^{((a-b)*(b+c-a))}\newline(x(ca))(c+ab)=x((ca)(c+ab))(x^{(c-a)})^{(c+a-b)} = x^{((c-a)*(c+a-b))}\newline(x(ab))(a+bc)=x((ab)(a+bc))(x^{(a-b)})^{(a+b-c)} = x^{((a-b)*(a+b-c))}
  3. Multiply results from Step 22: Step 33: Multiply the results from Step 22. x((ab)(b+ca)+(ca)(c+ab)+(ab)(a+bc))x^{((a-b)*(b+c-a) + (c-a)*(c+a-b) + (a-b)*(a+b-c))}
  4. Expand and simplify the exponent: Step 44: Expand and simplify the exponent.\newline(ab)(b+ca)=aba2+bcba,(a-b)\cdot(b+c-a) = ab - a^2 + bc - ba,\newline(ca)(c+ab)=c2ca+acab,(c-a)\cdot(c+a-b) = c^2 - ca + ac - ab,\newline(ab)(a+bc)=a2ab+abbc.(a-b)\cdot(a+b-c) = a^2 - ab + ab - bc.\newlineSumming these gives: aba2+bcba+c2ca+acab+a2ab+abbc=a2+c2a2ca+acca.ab - a^2 + bc - ba + c^2 - ca + ac - ab + a^2 - ab + ab - bc = a^2 + c^2 - a^2 - ca + ac - ca.\newlineSimplifies to,\newlinebk+c2ca+acb2bk + c^2 - ca + ac - b^2.

More problems from Find derivatives of using multiple formulae