Simplify fractions using exponents: Step 1: Simplify each fraction using the properties of exponents.(xbxa)=xa−b(xaxc)=xc−a(xbxa)=xa−b
Apply exponents to simplified fractions: Step 2: Apply the exponents to the simplified fractions.(x(a−b))(b+c−a)=x((a−b)∗(b+c−a))(x(c−a))(c+a−b)=x((c−a)∗(c+a−b))(x(a−b))(a+b−c)=x((a−b)∗(a+b−c))
Multiply results from Step 2: Step 3: Multiply the results from Step 2. x((a−b)∗(b+c−a)+(c−a)∗(c+a−b)+(a−b)∗(a+b−c))
Expand and simplify the exponent: Step 4: Expand and simplify the exponent.(a−b)⋅(b+c−a)=ab−a2+bc−ba,(c−a)⋅(c+a−b)=c2−ca+ac−ab,(a−b)⋅(a+b−c)=a2−ab+ab−bc.Summing these gives: ab−a2+bc−ba+c2−ca+ac−ab+a2−ab+ab−bc=a2+c2−a2−ca+ac−ca.Simplifies to,bk+c2−ca+ac−b2.
More problems from Find derivatives of using multiple formulae