Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the zeros of the function. Enter the solutions from least to greatest.
{:[f(x)=(x-2)^(2)-9],[" lesser "x=◻],[" greater "x=◻]:}

Find the zeros of the function. Enter the solutions from least to greatest.\newlinef(x)=(x2)29 lesser x= greater x=\begin{array}{l} f(x)=(x-2)^{2}-9 \\ \text { lesser } x= \square \\ \text { greater } x=\square \end{array}

Full solution

Q. Find the zeros of the function. Enter the solutions from least to greatest.\newlinef(x)=(x2)29 lesser x= greater x=\begin{array}{l} f(x)=(x-2)^{2}-9 \\ \text { lesser } x= \square \\ \text { greater } x=\square \end{array}
  1. Set Function Equal to Zero: Set the function equal to zero to find its zeros. f(x)=(x2)29=0f(x) = (x - 2)^2 - 9 = 0
  2. Solve Quadratic Equation: Solve the quadratic equation.\newline(x2)2=9(x - 2)^2 = 9
  3. Take Square Root: Take the square root of both sides of the equation.\newline(x2)2=±9\sqrt{(x - 2)^2} = \pm\sqrt{9}\newlinex2=±3x - 2 = \pm3
  4. Solve for Positive Root: Solve for xx by adding 22 to both sides of the equation.\newlineFor the positive root:\newlinex2+2=3+2x - 2 + 2 = 3 + 2\newlinex=5x = 5
  5. Solve for Negative Root: Solve for xx using the negative root.x2+2=3+2x - 2 + 2 = -3 + 2x=1x = -1

More problems from Find derivatives of sine and cosine functions