Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

q=9r^(2)+16s^(2)r^(2)
Which of the following equations correctly expresses 
r in terms of 
q and 
s ?
Choose 1 answer:
(A) 
r=+-(sqrtq)/(3+4s)
(B) 
r=+-sqrt((q)/(9+16s^(2)))
(C) 
r=+-sqrt((q)/(25s^(2)))
(D) 
r=+-(sqrt(q-16s^(2)))/(3)

q=9r2+16s2r2 q=9 r^{2}+16 s^{2} r^{2} \newlineWhich of the following equations correctly expresses r r in terms of q q and s s ?\newlineChoose 11 answer:\newline(A) r=±q3+4s r= \pm \frac{\sqrt{q}}{3+4 s} \newline(B) r=±q9+16s2 r= \pm \sqrt{\frac{q}{9+16 s^{2}}} \newline(C) r=±q25s2 r= \pm \sqrt{\frac{q}{25 s^{2}}} \newline(D) r=±q16s23 r= \pm \frac{\sqrt{q-16 s^{2}}}{3}

Full solution

Q. q=9r2+16s2r2 q=9 r^{2}+16 s^{2} r^{2} \newlineWhich of the following equations correctly expresses r r in terms of q q and s s ?\newlineChoose 11 answer:\newline(A) r=±q3+4s r= \pm \frac{\sqrt{q}}{3+4 s} \newline(B) r=±q9+16s2 r= \pm \sqrt{\frac{q}{9+16 s^{2}}} \newline(C) r=±q25s2 r= \pm \sqrt{\frac{q}{25 s^{2}}} \newline(D) r=±q16s23 r= \pm \frac{\sqrt{q-16 s^{2}}}{3}
  1. Given Equation: We are given the equation q=9r2+16s2r2q = 9r^2 + 16s^2r^2. To express rr in terms of qq and ss, we need to solve for rr.
  2. Combine Like Terms: Combine like terms by factoring out r2r^2 from the terms on the right side of the equation.\newlineq=r2(9+16s2)q = r^2(9 + 16s^2)
  3. Isolate r2r^2: Divide both sides of the equation by (9+16s2)(9 + 16s^2) to isolate r2r^2.\newliner2=q(9+16s2)r^2 = \frac{q}{(9 + 16s^2)}
  4. Take Square Root: Take the square root of both sides to solve for rr. Remember that taking the square root gives us both the positive and negative solutions.r=±q(9+16s2)r = \pm\sqrt{\frac{q}{(9 + 16s^2)}}
  5. Compare with Answer Choices: We can now compare the expression we found with the answer choices given in the problem.\newliner=±q(9+16s2)r = \pm\sqrt{\frac{q}{(9 + 16s^2)}} matches with option (B).

More problems from Find derivatives of using multiple formulae