Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Put the quadratic into vertex form and state the coordinates of the vertex.

y=x^(2)-20 x+25
Vertex Form: 
y=
Vertex: 
(◻,◻)

Put the quadratic into vertex form and state the coordinates of the vertex.\newliney=x220x+25 y=x^{2}-20 x+25 \newlineVertex Form: y= y= \newlineVertex: (,) (\square, \square)

Full solution

Q. Put the quadratic into vertex form and state the coordinates of the vertex.\newliney=x220x+25 y=x^{2}-20 x+25 \newlineVertex Form: y= y= \newlineVertex: (,) (\square, \square)
  1. Identify vertex form: Identify the vertex form of a parabola.\newlineThe vertex form of a parabola is y=a(xh)2+ky = a(x - h)^2 + k, where (h,k)(h, k) is the vertex of the parabola.
  2. Complete the square: Complete the square to rewrite the quadratic equation in vertex form.\newlineGiven equation: y=x220x+25y = x^2 - 20x + 25\newlineTo complete the square, we need to find the value that makes x220xx^2 - 20x a perfect square trinomial.\newlineWe take half of the coefficient of xx, which is 20-20, divide it by 22 to get 10-10, and then square it to get 100100.
  3. Add and subtract terms: Add and subtract the square of half the coefficient of xx inside the equation.\newlineWe add and subtract 100100 inside the equation to maintain the equality.\newliney=x220x+100100+25y = x^2 - 20x + 100 - 100 + 25
  4. Group and combine: Group the perfect square trinomial and combine the constants.\newliney=(x220x+100)100+25y = (x^2 - 20x + 100) - 100 + 25\newliney=(x10)275y = (x - 10)^2 - 75\newlineNow the equation is in vertex form.
  5. Identify the vertex: Identify the vertex of the parabola.\newlineThe vertex form of the equation is y=(x10)275y = (x - 10)^2 - 75.\newlineComparing this with the standard vertex form y=a(xh)2+ky = a(x - h)^2 + k, we find that h=10h = 10 and k=75k = -75.\newlineTherefore, the vertex of the parabola is (10,75)(10, -75).

More problems from Convert equations of parabolas from general to vertex form