Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Put the quadratic into vertex form and state the coordinates of the vertex.

y=x^(2)-8x+41
Vertex Form: 
y=
Vertex: 
(◻,◻)

Put the quadratic into vertex form and state the coordinates of the vertex.\newliney=x28x+41 y=x^{2}-8 x+41 \newlineVertex Form: y= y= \newlineVertex: (,) (\square, \square)

Full solution

Q. Put the quadratic into vertex form and state the coordinates of the vertex.\newliney=x28x+41 y=x^{2}-8 x+41 \newlineVertex Form: y= y= \newlineVertex: (,) (\square, \square)
  1. Identify vertex form: Identify the vertex form of a parabola.\newlineThe vertex form of a parabola is y=a(xh)2+ky = a(x - h)^2 + k, where (h,k)(h, k) is the vertex of the parabola.
  2. Complete the square: Complete the square to rewrite the quadratic equation in vertex form.\newlineGiven equation: y=x28x+41y = x^2 - 8x + 41\newlineWe need to find a value to add and subtract to complete the square.\newlineThe coefficient of xx is 8-8, so we take half of it, which is 4-4, and then square it to get 1616.\newlineWe will add and subtract 1616 inside the equation to complete the square.
  3. Add/subtract square: Add and subtract the square of half the coefficient of xx inside the equation.\newliney=x28x+1616+41y = x^2 - 8x + 16 - 16 + 41\newlineNow, group the perfect square trinomial and the constants.\newliney=(x28x+16)16+41y = (x^2 - 8x + 16) - 16 + 41
  4. Factor and simplify: Factor the perfect square trinomial and simplify the constants.\newliney=(x4)216+41y = (x - 4)^2 - 16 + 41\newliney=(x4)2+25y = (x - 4)^2 + 25\newlineNow we have the equation in vertex form.
  5. Identify parabola vertex: Identify the vertex of the parabola.\newlineThe vertex form of the equation is y=(x4)2+25y = (x - 4)^2 + 25.\newlineComparing this with the standard vertex form y=a(xh)2+ky = a(x - h)^2 + k, we find that h=4h = 4 and k=25k = 25.\newlineTherefore, the vertex of the parabola is (4,25)(4, 25).

More problems from Convert equations of parabolas from general to vertex form