Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Prove:


cot alpha+tan alpha=2csc 2alpha

11. Prove:\newlinecotα+tanα=2csc2α \cot \alpha+\tan \alpha=2 \csc 2 \alpha

Full solution

Q. 11. Prove:\newlinecotα+tanα=2csc2α \cot \alpha+\tan \alpha=2 \csc 2 \alpha
  1. Express in terms of sine/cosine: First, let's express cot(α)\cot(\alpha) and tan(α)\tan(\alpha) in terms of sine and cosine.\newlinecot(α)=cos(α)sin(α)\cot(\alpha) = \frac{\cos(\alpha)}{\sin(\alpha)} and tan(α)=sin(α)cos(α)\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)}.
  2. Add cot and tan: Now, let's add cot(α)\cot(\alpha) and tan(α)\tan(\alpha) together.cot(α)+tan(α)=cos(α)sin(α)+sin(α)cos(α).\cot(\alpha) + \tan(\alpha) = \frac{\cos(\alpha)}{\sin(\alpha)} + \frac{\sin(\alpha)}{\cos(\alpha)}.
  3. Find common denominator: To add these fractions, we need a common denominator, which is sin(α)cos(α)\sin(\alpha)\cos(\alpha).(cot(α)+tan(α))=(cos2(α)+sin2(α))/(sin(α)cos(α))(\cot(\alpha) + \tan(\alpha)) = (\cos^2(\alpha) + \sin^2(\alpha)) / (\sin(\alpha)\cos(\alpha)).
  4. Apply Pythagorean identity: We know that cos2(α)+sin2(α)=1\cos^2(\alpha) + \sin^2(\alpha) = 1, according to the Pythagorean identity.\newlineSo, (cot(α)+tan(α))=1(sin(α)cos(α)).(\cot(\alpha) + \tan(\alpha)) = \frac{1}{(\sin(\alpha)\cos(\alpha))}.
  5. Use double angle formula: Now, let's express the denominator sin(α)cos(α)\sin(\alpha)\cos(\alpha) in terms of the double angle formula for sine: sin(2α)=2sin(α)cos(α)\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha).(cot(α)+tan(α))=112sin(2α)(\cot(\alpha) + \tan(\alpha)) = \frac{1}{\frac{1}{2} \cdot \sin(2\alpha)}.
  6. Invert denominator: Inverting the fraction in the denominator, we get: (cot(α)+tan(α))=2sin(2α)(\cot(\alpha) + \tan(\alpha)) = \frac{2}{\sin(2\alpha)}.
  7. Reciprocal of sine: Finally, we know that csc(θ)\csc(\theta) is the reciprocal of sin(θ)\sin(\theta), so csc(2α)=1sin(2α)\csc(2\alpha) = \frac{1}{\sin(2\alpha)}. Therefore, (cot(α)+tan(α))=2csc(2α)(\cot(\alpha) + \tan(\alpha)) = 2\csc(2\alpha).

More problems from Solve linear equations with variables on both sides