Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Polynomial function h is defined as h(x)=2x^(3)-9x^(2)+cx-6, where c is a constant. If 
2x-3 is a factor of the polynomial, then what is the value of c ?
◻

Polynomial function hh is defined as h(x)=2x39x2+cx6h(x)=2x^{3}-9x^{2}+cx-6, where cc is a constant. If 2x32x-3 is a factor of the polynomial, then what is the value of cc ?\newline\square

Full solution

Q. Polynomial function hh is defined as h(x)=2x39x2+cx6h(x)=2x^{3}-9x^{2}+cx-6, where cc is a constant. If 2x32x-3 is a factor of the polynomial, then what is the value of cc ?\newline\square
  1. Apply Factor Theorem: Since 2x32x - 3 is a factor of the polynomial h(x)h(x), we can use the Factor Theorem which states that if (axb)(ax - b) is a factor of a polynomial, then the polynomial will equal zero when xx equals ba\frac{b}{a}.
  2. Find x value: Let's find the value of x that makes 2x32x - 3 equal to zero. We solve the equation 2x3=02x - 3 = 0 for x.\newline2x=32x = 3\newlinex=32x = \frac{3}{2}
  3. Substitute xx into h(x)h(x): Now we substitute x=32x = \frac{3}{2} into the polynomial h(x)h(x) and set it equal to zero, because the Factor Theorem tells us that h(32)h\left(\frac{3}{2}\right) should be zero if 2x32x - 3 is indeed a factor.\newlineh(32)=2(32)39(32)2+c(32)6=0h\left(\frac{3}{2}\right) = 2\left(\frac{3}{2}\right)^3 - 9\left(\frac{3}{2}\right)^2 + c\left(\frac{3}{2}\right) - 6 = 0
  4. Calculate h(32)h\left(\frac{3}{2}\right): We calculate each term separately:\newline(32)3=278\left(\frac{3}{2}\right)^3 = \frac{27}{8}\newline(32)2=94\left(\frac{3}{2}\right)^2 = \frac{9}{4}\newlineNow we substitute these values into the equation:\newline2(278)9(94)+c(32)6=02\left(\frac{27}{8}\right) - 9\left(\frac{9}{4}\right) + c\left(\frac{3}{2}\right) - 6 = 0
  5. Simplify terms: Simplify each term:\newline2(278)=2742\left(\frac{27}{8}\right) = \frac{27}{4}\newline9(94)=8149\left(\frac{9}{4}\right) = \frac{81}{4}\newlinec(32)=3c2c\left(\frac{3}{2}\right) = \frac{3c}{2}\newlineNow we have:\newline274814+3c26=0\frac{27}{4} - \frac{81}{4} + \frac{3c}{2} - 6 = 0
  6. Combine like terms: Combine like terms and simplify the equation:\newline(274814)+3c26=0(\frac{27}{4} - \frac{81}{4}) + \frac{3c}{2} - 6 = 0\newline(544)+3c26=0(-\frac{54}{4}) + \frac{3c}{2} - 6 = 0\newline13.5+3c26=0-13.5 + \frac{3c}{2} - 6 = 0
  7. Combine constant terms: Combine the constant terms:\newline13.56=19.5-13.5 - 6 = -19.5\newlineSo we have:\newline19.5+3c2=0-19.5 + \frac{3c}{2} = 0
  8. Solve for c: Now we solve for c:\newline3c2=19.5\frac{3c}{2} = 19.5\newlineMultiply both sides by 23\frac{2}{3} to isolate c:\newlinec=(19.5)×(23)c = (19.5) \times (\frac{2}{3})\newlinec=393c = \frac{39}{3}\newlinec=13c = 13

More problems from Simplify exponential expressions using exponent rules