Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Perimeter, Area, and Volume
Volume of a sphere
The radlus, 
R, of a sphere is 
7.7m. Calculate the sphere's volume, 
V.
Use the value 3.14 for 
pi, and round your answer to the nearest tenth. (Do not round any Intermedlate computations.)

V=□m^(3)

Perimeter, Area, and Volume\newlineVolume of a sphere\newlineThe radlus, R R , of a sphere is 7.7 m 7.7 \mathrm{~m} . Calculate the sphere's volume, V V .\newlineUse the value 33.1414 for π \pi , and round your answer to the nearest tenth. (Do not round any Intermedlate computations.)\newlineV=m3 V=\square\mathrm{m}^{3}

Full solution

Q. Perimeter, Area, and Volume\newlineVolume of a sphere\newlineThe radlus, R R , of a sphere is 7.7 m 7.7 \mathrm{~m} . Calculate the sphere's volume, V V .\newlineUse the value 33.1414 for π \pi , and round your answer to the nearest tenth. (Do not round any Intermedlate computations.)\newlineV=m3 V=\square\mathrm{m}^{3}
  1. Identify Formula: Identify the formula for the volume of a sphere.\newlineThe formula for the volume of a sphere is V=43πr3V = \frac{4}{3}\pi r^3, where VV is the volume, π\pi is pi, and rr is the radius of the sphere.
  2. Substitute Values: Substitute the given values into the formula.\newlineWe are given the radius r=7.7r = 7.7 meters and π=3.14\pi = 3.14. So, we substitute these values into the formula to get V=43×3.14×(7.7)3V = \frac{4}{3} \times 3.14 \times (7.7)^3.
  3. Calculate Volume: Calculate the volume.\newlineFirst, calculate the radius cubed: (7.7)3=456.533(7.7)^3 = 456.533.\newlineThen, multiply this by π\pi: 456.533×3.14=1433.50242456.533 \times 3.14 = 1433.50242.\newlineFinally, multiply by 4/34/3: (43)×1433.50242=1911.33656\left(\frac{4}{3}\right) \times 1433.50242 = 1911.33656.
  4. Round Result: Round the result to the nearest tenth.\newlineThe volume of the sphere, rounded to the nearest tenth, is 1911.31911.3 cubic meters.

More problems from Evaluate two-variable equations: word problems