Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Multiply and simplify the following complex numbers: (34i)×(3+2i)(3-4i) \times (-3 + 2i)

Full solution

Q. Multiply and simplify the following complex numbers: (34i)×(3+2i)(3-4i) \times (-3 + 2i)
  1. Apply Distributive Property: Step 11: Apply the distributive property to multiply the complex numbers.\newline(34i)×(3+2i)=3×(3)+3×(2i)4i×(3)4i×(2i)(3-4i) \times (-3+2i) = 3\times(-3) + 3\times(2i) - 4i\times(-3) - 4i\times(2i)
  2. Perform Multiplication: Step 22: Perform the multiplication for each term.\newline= 9+6i+12i8i2-9 + 6i + 12i - 8i^2
  3. Combine Like Terms: Step 33: Combine like terms and remember that i2=1i^2 = -1.
    = 9+18i8(1)-9 + 18i - 8(-1)
  4. Simplify Expression: Step 44: Simplify the expression by substituting i2i^2 with 1-1.\newline=9+18i+8= -9 + 18i + 8
  5. Add Real and Imaginary Parts: Step 55: Add the real parts and combine the imaginary parts.\newline=1+18i= -1 + 18i

More problems from Evaluate integers raised to rational exponents