Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

A function k whose domain is the set of positive integers is defined as k(1)=4 and k(n)=k(n-1)-2.
Function k was evaluated for several numbers. Which of the following are true?
Select each correct answer.
(A) k(-1)=-4
(B) k(0)=-2
(C) k(2)=2
(D) k(3)=0
(E) k(6)=3

A function k k whose domain is the set of positive integers is defined as k(1)=4 k(1)=4 and k(n)=k(n1)2 k(n)=k(n-1)-2 .\newlineFunction k k was evaluated for several numbers. Which of the following are true?\newlineSelect each correct answer.\newline(A) k(1)=4 k(-1)=-4 \newline(B) k(0)=2 k(0)=-2 \newline(C) k(2)=2 k(2)=2 \newline(D) k(3)=0 k(3)=0 \newline(E) k(6)=3 k(6)=3

Full solution

Q. A function k k whose domain is the set of positive integers is defined as k(1)=4 k(1)=4 and k(n)=k(n1)2 k(n)=k(n-1)-2 .\newlineFunction k k was evaluated for several numbers. Which of the following are true?\newlineSelect each correct answer.\newline(A) k(1)=4 k(-1)=-4 \newline(B) k(0)=2 k(0)=-2 \newline(C) k(2)=2 k(2)=2 \newline(D) k(3)=0 k(3)=0 \newline(E) k(6)=3 k(6)=3
  1. Understand Function Definition: Understand the function definition and domain.\newlineThe function kk is defined for positive integers, with k(1)=4k(1)=4 and k(n)=k(n1)2k(n)=k(n-1)-2 for n > 1. This means that for each step nn, the function value decreases by 22 from its previous value.
  2. Evaluate Statement A: Evaluate the truth of statement A.\newlineSince the domain of kk is the set of positive integers, k(1)k(-1) is not defined. Therefore, statement A is false.
  3. Evaluate Statement B: Evaluate the truth of statement B. Similarly, k(0)k(0) is not defined because 00 is not a positive integer. Therefore, statement B is false.
  4. Evaluate Statement C: Evaluate the truth of statement C.\newlineUsing the definition of kk, we calculate k(2)k(2) as follows:\newlinek(2)=k(21)2k(2) = k(2-1) - 2\newlinek(2)=k(1)2k(2) = k(1) - 2\newlinek(2)=42k(2) = 4 - 2\newlinek(2)=2k(2) = 2\newlineTherefore, statement C is true.
  5. Evaluate Statement D: Evaluate the truth of statement D.\newlineUsing the definition of kk, we calculate k(3)k(3) as follows:\newlinek(3)=k(31)2k(3) = k(3-1) - 2\newlinek(3)=k(2)2k(3) = k(2) - 2\newlinek(3)=22k(3) = 2 - 2 (from the previous step)\newlinek(3)=0k(3) = 0\newlineTherefore, statement D is true.
  6. Evaluate Statement E: Evaluate the truth of statement E.\newlineUsing the definition of kk, we calculate k(6)k(6) as follows:\newlinek(6)=k(61)2k(6) = k(6-1) - 2\newlinek(6)=k(5)2k(6) = k(5) - 2\newlineWe need to find k(5)k(5) first, which requires finding k(4)k(4):\newlinek(4)=k(41)2k(4) = k(4-1) - 2\newlinek(4)=k(3)2k(4) = k(3) - 2\newlinek(4)=02k(4) = 0 - 2 (from step 55)\newlinek(4)=2k(4) = -2\newlineNow we find k(5)k(5):\newlinek(6)k(6)11\newlinek(6)k(6)22\newlinek(6)k(6)33\newlinek(6)k(6)44\newlineFinally, we find k(6)k(6):\newlinek(6)=k(5)2k(6) = k(5) - 2\newlinek(6)k(6)77\newlinek(6)k(6)88\newlineTherefore, statement E is false.