Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Logarithmic Functions: 
f(x)=alog_(b)(x-h)+k

f(x)=log_(b)x,b > 1
Domain:
Range:
Vertical Asymptote:

Logarithmic Functions: \newlinef(x)=alogb(xh)+kf(x)=a\log_{b}(x-h)+k\newlinef(x)=logbxf(x)=\log_{b}x, b > 1\newlineDomain:\newlineRange:\newlineVertical Asymptote:

Full solution

Q. Logarithmic Functions: \newlinef(x)=alogb(xh)+kf(x)=a\log_{b}(x-h)+k\newlinef(x)=logbxf(x)=\log_{b}x, b>1b > 1\newlineDomain:\newlineRange:\newlineVertical Asymptote:
  1. Identify Base Impact: Identify the base of the logarithm and its impact on the function.\newlineSince b > 1, the base is a valid positive number not equal to 11, which is necessary for the logarithmic function to be defined.
  2. Find Domain: Find the domain of f(x)=logb(x)f(x) = \log_b(x). The logarithmic function is defined only for x > 0. Therefore, the domain of f(x)=logb(x)f(x) = \log_b(x) is all positive real numbers.
  3. Determine Range: Determine the range of f(x)=logb(x)f(x) = \log_b(x). The output of a logarithmic function can be any real number, which means the range of f(x)f(x) is all real numbers.
  4. Identify Vertical Asymptote: Identify the vertical asymptote of f(x)=logb(x)f(x) = \log_b(x). The vertical asymptote occurs where the function is undefined and near which the function heads towards negative or positive infinity. For logb(x)\log_b(x), this is at x=0x = 0.

More problems from Find derivatives of sine and cosine functions