Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

log_(64)(1)/(4)=

log6414= \log _{64} \frac{1}{4}=

Full solution

Q. log6414= \log _{64} \frac{1}{4}=
  1. Identify base and argument: Identify the base of the logarithm and the argument.\newlineThe base of the logarithm is 6464, and the argument is 14\frac{1}{4}.
  2. Express argument as power of base: Express the argument 14\frac{1}{4} as a power of the base 6464.\newlineSince 6464 is 22 raised to the 66th power (64=2664 = 2^6), we need to express 14\frac{1}{4} in terms of a power of 22. We know that 14\frac{1}{4} is 22 raised to the power of 646400 (646411).
  3. Express power of base as power of 6464: Express 222^{-2} as a power of 6464.\newlineSince 6464 is 262^6, we can write 222^{-2} as (26)13(2^6)^{-\frac{1}{3}} because (26)13=26(13)=22(2^6)^{-\frac{1}{3}} = 2^{6(-\frac{1}{3})} = 2^{-2}.
  4. Write logarithm with new expression: Write the logarithm with the new expression for 14\frac{1}{4}.\newlinelog64((26)13)\log_{64}\left((2^6)^{-\frac{1}{3}}\right)
  5. Apply power property of logarithms: Apply the power property of logarithms.\newlineThe power property of logarithms states that logb(ac)=clogb(a)\log_b(a^c) = c \cdot \log_b(a). Therefore, we have:\newlinelog64((26)13)=13log64(26)\log_{64}((2^6)^{-\frac{1}{3}}) = -\frac{1}{3} \cdot \log_{64}(2^6)
  6. Evaluate logarithm: Evaluate log64(26)\log_{64}(2^6).\newlineSince the base of the logarithm (64)(64) is equal to 262^6, log64(26)=1\log_{64}(2^6) = 1.
  7. Multiply result by exponent: Multiply the result from Step 66 by the exponent from Step 55.\newline(13)×1=13(-\frac{1}{3}) \times 1 = -\frac{1}{3}
  8. Conclude final answer: Conclude the final answer.\newlineThe value of log64(14)\log_{64}(\frac{1}{4}) is 13-\frac{1}{3}.

More problems from Evaluate logarithms using properties