Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Calculate the limit.
lim_((x,y)rarr(0,0))(x^(2)+y^(4))/(x^(4)+y^(2))

Calculate the limit.\newlinelim(x,y)(0,0)x2+y4x4+y2 \lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+y^{4}}{x^{4}+y^{2}}

Full solution

Q. Calculate the limit.\newlinelim(x,y)(0,0)x2+y4x4+y2 \lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+y^{4}}{x^{4}+y^{2}}
  1. Check Initial Value: First, let's plug in the values of xx and yy as 00 to see if the function is defined at that point.\newlinelim(x,y)(0,0)x2+y4x4+y2=02+0404+02=00\lim_{(x,y)\to(0,0)}\frac{x^{2}+y^{4}}{x^{4}+y^{2}} = \frac{0^2 + 0^4}{0^4 + 0^2} = \frac{0}{0}\newlineWe get an indeterminate form, so we need to do more work to find the limit.
  2. Approach Along y-axis: Let's try approaching (0,0)(0, 0) along the y-axis (x=0)(x=0).lim(x,y)(0,0)x2+y4x4+y2=lim(y)(0)02+y404+y2=lim(y)(0)y4y2\lim_{(x,y)\to(0,0)}\frac{x^{2}+y^{4}}{x^{4}+y^{2}} = \lim_{(y)\to(0)}\frac{0^2+y^{4}}{0^4+y^{2}} = \lim_{(y)\to(0)}\frac{y^{4}}{y^{2}}Simplify the expression.lim(y)(0)y4y2=lim(y)(0)y2=0\lim_{(y)\to(0)}\frac{y^{4}}{y^{2}} = \lim_{(y)\to(0)}y^{2} = 0
  3. Approach Along x-axis: Now, let's approach (0,0)(0, 0) along the x-axis (y=0)(y=0).lim(x,y)(0,0)x2+y4x4+y2=lim(x)(0)x2+04x4+02=lim(x)(0)x2x4\lim_{(x,y)\to(0,0)}\frac{x^{2}+y^{4}}{x^{4}+y^{2}} = \lim_{(x)\to(0)}\frac{x^{2}+0^{4}}{x^{4}+0^{2}} = \lim_{(x)\to(0)}\frac{x^{2}}{x^{4}}Simplify the expression.lim(x)(0)x2x4=lim(x)(0)1x2\lim_{(x)\to(0)}\frac{x^{2}}{x^{4}} = \lim_{(x)\to(0)}\frac{1}{x^{2}}As xx approaches 00, 1x2\frac{1}{x^2} approaches infinity.

More problems from Find derivatives of using multiple formulae