Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

lim_(x rarr5)(3-x^(2))/(2x+1)=

limx53x22x+1= \lim _{x \rightarrow 5} \frac{3-x^{2}}{2 x+1}=

Full solution

Q. limx53x22x+1= \lim _{x \rightarrow 5} \frac{3-x^{2}}{2 x+1}=
  1. Substitute x=5x = 5: Substitute the value of xx with 55 in the expression 3x22x+1\frac{3-x^2}{2x+1} to see if the limit can be directly evaluated.\newlineSubstitute x=5x = 5:\newline3(5)225+1\frac{3 - (5)^2}{2\cdot5 + 1}
  2. Perform calculations: Perform the calculations after substitution.\newline(325)/(10+1)(3 - 25) / (10 + 1)\newline= (22)/11(-22) / 11\newline= 2-2
  3. Check determinate form: Check if the result is a determinate form or if there are any indeterminate forms such as 0/00/0 or /\infty/\infty.\newlineSince the result is a real number and not an indeterminate form, the limit can be evaluated directly.
  4. Conclude the limit: Conclude the limit based on the calculations.\newlineThe limit of (3x2)/(2x+1)(3-x^2)/(2x+1) as xx approaches 55 is 2-2.

More problems from Negative Exponents

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 9 months ago