Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Calculate the limit.
lim_(x rarr4)(|x+1||x-4|)/(x^(2)-5x+4)

Calculate the limit.\newlinelimx4x+1x4x25x+4 \lim _{x \rightarrow 4} \frac{|x+1||x-4|}{x^{2}-5 x+4}

Full solution

Q. Calculate the limit.\newlinelimx4x+1x4x25x+4 \lim _{x \rightarrow 4} \frac{|x+1||x-4|}{x^{2}-5 x+4}
  1. Factor Denominator: First, let's factor the denominator.\newlinex25x+4=(x4)(x1)x^2 - 5x + 4 = (x - 4)(x - 1)
  2. Rewrite Limit: Now, let's rewrite the limit with the factored denominator.\newlinelimx4x+1x4(x4)(x1)\lim_{x \to 4}\frac{|x+1||x-4|}{(x - 4)(x - 1)}
  3. Cancel Absolute Value: Notice that x4|x-4| and (x4)(x-4) will cancel each other out, but we need to be careful because of the absolute value.
  4. Split Limit into Cases: Since we're approaching 44 from both sides, x4=x4|x-4| = x-4 when x > 4 and x4=(x4)|x-4| = -(x-4) when x < 4.
  5. Simplify Both Cases: So, we can split the limit into two cases, one for x > 4 and one for x < 4. For x > 4: limx4+(x+1(x4)(x4)(x1))\lim_{x \to 4^+}\left(\frac{|x+1|(x-4)}{(x - 4)(x - 1)}\right) For x < 4: limx4(x+1((x4))(x4)(x1))\lim_{x \to 4^-}\left(\frac{|x+1|(-(x-4))}{(x - 4)(x - 1)}\right)
  6. Evaluate Absolute Value: Now, let's simplify both cases.\newlineFor x > 4: limx4+(x+1x1)\lim_{x \to 4^+}\left(\frac{|x+1|}{x - 1}\right)\newlineFor x < 4: limx4(x+1x1)\lim_{x \to 4^-}\left(\frac{-|x+1|}{x - 1}\right)
  7. Find Limits: As xx approaches 44, x+1|x+1| becomes 4+1|4+1| which is 55.
  8. Find Limits: As xx approaches 44, x+1|x+1| becomes 4+1|4+1| which is 55.So, we have:\newlineFor x > 4: limx4+5x1\lim_{x \to 4^+}\frac{5}{x - 1}\newlineFor x < 4: limx45x1\lim_{x \to 4^-}\frac{-5}{x - 1}
  9. Find Limits: As xx approaches 44, x+1|x+1| becomes 4+1|4+1| which is 55.So, we have:\newlineFor x > 4: limx4+5x1\lim_{x \to 4^+}\frac{5}{x - 1}\newlineFor x < 4: limx45x1\lim_{x \to 4^-}\frac{-5}{x - 1}Now, let's find the limits.\newlineFor x > 4: 4400\newlineFor x < 4: 4422

More problems from Find derivatives of using multiple formulae