Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

lim_(x rarr pi)cos(x)=?
Choose 1 answer:
(A) -1
(B) 0
(C) 1
(D) The limit doesn't exist.

limxπcos(x)=? \lim _{x \rightarrow \pi} \cos (x)=? \newlineChoose 11 answer:\newline(A) 1-1\newline(B) 00\newline(C) 11\newline(D) The limit doesn't exist.

Full solution

Q. limxπcos(x)=? \lim _{x \rightarrow \pi} \cos (x)=? \newlineChoose 11 answer:\newline(A) 1-1\newline(B) 00\newline(C) 11\newline(D) The limit doesn't exist.
  1. Evaluate Cosine Function: To solve the limit problem, we need to evaluate the cosine function as the variable xx approaches the value of π\pi. The cosine function is continuous everywhere, so we can find the limit by direct substitution.
  2. Substitute xx with π\pi: Substitute xx with π\pi in the cosine function: cos(π)\cos(\pi).
  3. Use Trigonometric Identities: Using the unit circle or trigonometric identities, we know that cos(π)\cos(\pi) equals 1-1.
  4. Find the Limit: Therefore, the limit of cos(x)\cos(x) as xx approaches π\pi is 1-1.

More problems from Find derivatives of logarithmic functions