Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

lim_(x rarr(pi)/(4))cot(x)=?
Choose 1 answer:
(A) 
(sqrt2)/(2)
(B) 1
(C) 
sqrt2
(D) The limit doesn't exist.

limxπ4cot(x)=? \lim _{x \rightarrow \frac{\pi}{4}} \cot (x)=? \newlineChoose 11 answer:\newline(A) 22 \frac{\sqrt{2}}{2} \newline(B) 11\newline(C) 2 \sqrt{2} \newline(D) The limit doesn't exist.

Full solution

Q. limxπ4cot(x)=? \lim _{x \rightarrow \frac{\pi}{4}} \cot (x)=? \newlineChoose 11 answer:\newline(A) 22 \frac{\sqrt{2}}{2} \newline(B) 11\newline(C) 2 \sqrt{2} \newline(D) The limit doesn't exist.
  1. Recalling the definition of cotangent: First, let's recall the definition of cotangent in terms of sine and cosine:\newlinecot(x)=cos(x)sin(x)\cot(x) = \frac{\cos(x)}{\sin(x)}\newlineWe will use this definition to find the limit as xx approaches π4\frac{\pi}{4}.
  2. Evaluating cosine and sine: Now, let's evaluate the cosine and sine of π4\frac{\pi}{4}:\newlinecos(π4)=22\cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}\newlinesin(π4)=22\sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}\newlineThese are well-known values from the unit circle.
  3. Substituting values into cotangent expression: Next, we substitute these values into the cotangent expression: cot(π/4)=cos(π/4)sin(π/4)=2/22/2\cot(\pi/4) = \frac{\cos(\pi/4)}{\sin(\pi/4)} = \frac{\sqrt{2}/2}{\sqrt{2}/2}
  4. Simplifying the expression: We simplify the expression by dividing the numerators and the denominators: cot(π4)=2/22/2=1\cot(\frac{\pi}{4}) = \frac{\sqrt{2}/2}{\sqrt{2}/2} = 1
  5. Concluding the limit: Since the limit of cot(x)\cot(x) as xx approaches π4\frac{\pi}{4} is simply the value of cot(π4)\cot\left(\frac{\pi}{4}\right), we conclude that:\newlinelimxπ4cot(x)=1\lim_{x \to \frac{\pi}{4}} \cot(x) = 1

More problems from Find derivatives of logarithmic functions