Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
y=x^(4)ln(x).
Find 
(dy)/(dx).
Choose 1 answer:
(A) 
x^(3)(4ln(x)+1)
(B) 
4x^(2)
(C) 
4x^(3)+(1)/(x)
(D) 
4x^(3)(x^(4)+ln(x))

Let y=x4ln(x) y=x^{4} \ln (x) .\newlineFind dydx \frac{d y}{d x} .\newlineChoose 11 answer:\newline(A) x3(4ln(x)+1) x^{3}(4 \ln (x)+1) \newline(B) 4x2 4 x^{2} \newline(C) 4x3+1x 4 x^{3}+\frac{1}{x} \newline(D) 4x3(x4+ln(x)) 4 x^{3}\left(x^{4}+\ln (x)\right)

Full solution

Q. Let y=x4ln(x) y=x^{4} \ln (x) .\newlineFind dydx \frac{d y}{d x} .\newlineChoose 11 answer:\newline(A) x3(4ln(x)+1) x^{3}(4 \ln (x)+1) \newline(B) 4x2 4 x^{2} \newline(C) 4x3+1x 4 x^{3}+\frac{1}{x} \newline(D) 4x3(x4+ln(x)) 4 x^{3}\left(x^{4}+\ln (x)\right)
  1. Apply Product Rule: Using the product rule: (d(uv))/(dx)=u(dv)/(dx)+v(du)/(dx)(d(uv))/(dx) = u(dv)/(dx) + v(du)/(dx), where u=x4u = x^{4} and v=ln(x)v = \ln(x).
  2. Find dudx\frac{du}{dx}: First, find the derivative of u=x4u = x^{4}, which is dudx=4x3\frac{du}{dx} = 4x^{3}.
  3. Find dvdx\frac{dv}{dx}: Now, find the derivative of v=ln(x)v = \ln(x), which is (dvdx)=1x\left(\frac{dv}{dx}\right) = \frac{1}{x}.
  4. Apply Product Rule: Apply the product rule: (dydx)=x4(1x)+ln(x)4x3(\frac{dy}{dx}) = x^{4} \cdot (\frac{1}{x}) + \ln(x) \cdot 4x^{3}.
  5. Simplify Expression: Simplify the expression: (dydx)=x3+4x3ln(x)(\frac{dy}{dx}) = x^{3} + 4x^{3}\ln(x). Oops, there's a mistake here. We need to multiply x3x^{3} by 44 in the second term.

More problems from Multiplication with rational exponents