Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
y=x^(4)ln(x).
Find 
(dy)/(dx).
Choose 1 answer:
(A) 
4x^(2)
(B) 
x^(3)(4ln(x)+1)
(C) 
4x^(3)+(1)/(x)
(D) 
4x^(3)(x^(4)+ln(x))

Let y=x4ln(x) y=x^{4} \ln (x) .\newlineFind dydx \frac{d y}{d x} .\newlineChoose 11 answer:\newline(A) 4x2 4 x^{2} \newline(B) x3(4ln(x)+1) x^{3}(4 \ln (x)+1) \newline(C) 4x3+1x 4 x^{3}+\frac{1}{x} \newline(D) 4x3(x4+ln(x)) 4 x^{3}\left(x^{4}+\ln (x)\right)

Full solution

Q. Let y=x4ln(x) y=x^{4} \ln (x) .\newlineFind dydx \frac{d y}{d x} .\newlineChoose 11 answer:\newline(A) 4x2 4 x^{2} \newline(B) x3(4ln(x)+1) x^{3}(4 \ln (x)+1) \newline(C) 4x3+1x 4 x^{3}+\frac{1}{x} \newline(D) 4x3(x4+ln(x)) 4 x^{3}\left(x^{4}+\ln (x)\right)
  1. Apply Product Rule: Using the product rule, which states that (ddx)[uv]=uv+uv(\frac{d}{dx})[u*v] = u'v + uv', where u=x4u = x^{4} and v=ln(x)v = \ln(x). Differentiate uu with respect to xx to get u=(ddx)x4=4x3u' = (\frac{d}{dx})x^{4} = 4x^{3}.
  2. Differentiate uu: Now, differentiate vv with respect to xx to get v=ddxln(x)=1xv' = \frac{d}{dx}\ln(x) = \frac{1}{x}.
  3. Differentiate vv: Plug uu', uu, vv', and vv into the product rule formula: (4x3)ln(x)+(x4)(1x)(4x^{3})\cdot\ln(x) + (x^{4})\cdot(\frac{1}{x}).
  4. Apply Product Rule Formula: Simplify the expression: 4x3ln(x)+x3.4x^{3}\ln(x) + x^{3}.

More problems from Multiplication with rational exponents