Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
y=sqrtxcos(x).
Find 
(dy)/(dx).
Choose 1 answer:
(A) 
-(1)/(sqrtx)+sin(x)
(B) 
(cos(x))/(2sqrtx)-sqrtxsin(x)
(C) 
-(sin(x))/(sqrtx)
(D) 
-2sqrtxcos(x)-sqrtxsin(x)

Let y=xcos(x) y=\sqrt{x} \cos (x) .\newlineFind dydx \frac{d y}{d x} .\newlineChoose 11 answer:\newline(A) 1x+sin(x) -\frac{1}{\sqrt{x}}+\sin (x) \newline(B) cos(x)2xxsin(x) \frac{\cos (x)}{2 \sqrt{x}}-\sqrt{x} \sin (x) \newline(C) sin(x)x -\frac{\sin (x)}{\sqrt{x}} \newline(D) 2xcos(x)xsin(x) -2 \sqrt{x} \cos (x)-\sqrt{x} \sin (x)

Full solution

Q. Let y=xcos(x) y=\sqrt{x} \cos (x) .\newlineFind dydx \frac{d y}{d x} .\newlineChoose 11 answer:\newline(A) 1x+sin(x) -\frac{1}{\sqrt{x}}+\sin (x) \newline(B) cos(x)2xxsin(x) \frac{\cos (x)}{2 \sqrt{x}}-\sqrt{x} \sin (x) \newline(C) sin(x)x -\frac{\sin (x)}{\sqrt{x}} \newline(D) 2xcos(x)xsin(x) -2 \sqrt{x} \cos (x)-\sqrt{x} \sin (x)
  1. Define uu and vv: Using the product rule, which states that ddx[u(x)v(x)]=u(x)v(x)+u(x)v(x)\frac{d}{dx}[u(x)v(x)] = u'(x)v(x) + u(x)v'(x), let's differentiate yy.\newlineLet u=xu = \sqrt{x} and v=cos(x)v = \cos(x).
  2. Differentiate uu: Differentiate u=xu = \sqrt{x} with respect to xx to get uu'.\newlineu=(12)x(12)u' = (\frac{1}{2})x^{(-\frac{1}{2})}
  3. Differentiate vv: Differentiate v=cos(x)v = \cos(x) with respect to xx to get vv'.\newlinev=sin(x)v' = -\sin(x)
  4. Apply product rule: Now plug uu', vv, uu, and vv' into the product rule formula.\newline(dy/dx)=(1/2)x(1/2)cos(x)+x(sin(x))(dy/dx) = (1/2)x^{(-1/2)}\cos(x) + \sqrt{x}(-\sin(x))
  5. Simplify expression: Simplify the expression. dydx=cos(x)2xxsin(x)\frac{dy}{dx} = \frac{\cos(x)}{2\sqrt{x}} - \sqrt{x}\sin(x)

More problems from Multiplication with rational exponents