Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
x^(3)+y^(2)=24.
What is the value of 
(d^(2)y)/(dx^(2)) at the point 
(2,4) ?
Give an exact number.

Let x3+y2=24 x^{3}+y^{2}=24 .\newlineWhat is the value of d2ydx2 \frac{d^{2} y}{d x^{2}} at the point (2,4) (2,4) ?\newlineGive an exact number.

Full solution

Q. Let x3+y2=24 x^{3}+y^{2}=24 .\newlineWhat is the value of d2ydx2 \frac{d^{2} y}{d x^{2}} at the point (2,4) (2,4) ?\newlineGive an exact number.
  1. Implicit Differentiation: Given the equation x3+y2=24x^3 + y^2 = 24, we need to find the second derivative of yy with respect to xx at the point (2,4)(2,4). To do this, we first need to find the first derivative dydx\frac{dy}{dx} by implicit differentiation.\newlineDifferentiate both sides of the equation with respect to xx:\newlineddx(x3)+ddx(y2)=ddx(24)\frac{d}{dx} (x^3) + \frac{d}{dx} (y^2) = \frac{d}{dx} (24)\newline3x2+2ydydx=03x^2 + 2y\frac{dy}{dx} = 0\newlineNow, solve for dydx\frac{dy}{dx}:\newline2ydydx=3x22y\frac{dy}{dx} = -3x^2\newlineyy00
  2. Second Derivative Calculation: Next, we need to find the second derivative d2ydx2\frac{d^2y}{dx^2}. To do this, we differentiate dydx\frac{dy}{dx} with respect to xx again, using implicit differentiation and the chain rule.\newlineDifferentiate 3x22y-\frac{3x^2}{2y} with respect to xx:\newlineddx(dydx)=ddx(3x22y)\frac{d}{dx} (\frac{dy}{dx}) = \frac{d}{dx} (-\frac{3x^2}{2y})\newlineUsing the quotient rule, we get:\newlined2ydx2=(2yddx(3x2)(3x2)ddx(2y))(2y)2\frac{d^2y}{dx^2} = \frac{(2y \cdot \frac{d}{dx} (-3x^2) - (-3x^2) \cdot \frac{d}{dx} (2y))}{(2y)^2}\newlined2ydx2=(2y(6x)(3x2)2(dydx))(2y)2\frac{d^2y}{dx^2} = \frac{(2y \cdot (-6x) - (-3x^2) \cdot 2(\frac{dy}{dx}))}{(2y)^2}
  3. Substitution of Values: Now we need to substitute dydx\frac{dy}{dx} from the first derivative we found earlier into the second derivative equation.\newlineSubstitute dydx=3x22y\frac{dy}{dx} = \frac{-3x^2}{2y} into the second derivative:\newlined2ydx2=(2y(6x)(3x2)2(3x2/(2y)))(2y)2\frac{d^2y}{dx^2} = \frac{(2y \cdot (-6x) - (-3x^2) \cdot 2(-3x^2 / (2y)))}{(2y)^2}\newlineSimplify the equation:\newlined2ydx2=(12xy+9x4/y)(4y2)\frac{d^2y}{dx^2} = \frac{(-12xy + 9x^4 / y)}{(4y^2)}
  4. Final Result: Finally, we substitute the point (2,4)(2,4) into the second derivative to find the value of d2ydx2\frac{d^2y}{dx^2} at that point.\newlineSubstitute x=2x = 2 and y=4y = 4 into the second derivative:\newlined2ydx2=(1224+924)/4442\frac{d^2y}{dx^2} = \frac{(-12\cdot2\cdot4 + 9\cdot2^4) / 4}{4\cdot4^2}\newlineSimplify the equation:\newlined2ydx2=(96+144/4)64\frac{d^2y}{dx^2} = \frac{(-96 + 144 / 4)}{64}\newlined2ydx2=(96+36)64\frac{d^2y}{dx^2} = \frac{(-96 + 36)}{64}\newlined2ydx2=6064\frac{d^2y}{dx^2} = \frac{-60}{64}\newlineReduce the fraction:\newlined2ydx2=1516\frac{d^2y}{dx^2} = \frac{-15}{16}

More problems from Write a linear equation from two points