Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
h(x)=sqrtxln(x).
Find 
h^(')(x).
Choose 1 answer:
(A) 
(ln(x))/(2sqrtx)+(1)/(sqrtx)
(B) 
(1)/(2sqrtx)+(1)/(x)
(C) 
(1)/(2sqrtx)*(1)/(x)
(D) 
(sqrtxln(x))/(2)+(1)/(sqrtx)

Let h(x)=xln(x) h(x)=\sqrt{x} \ln (x) .\newlineFind h(x) h^{\prime}(x) .\newlineChoose 11 answer:\newline(A) ln(x)2x+1x \frac{\ln (x)}{2 \sqrt{x}}+\frac{1}{\sqrt{x}} \newline(B) 12x+1x \frac{1}{2 \sqrt{x}}+\frac{1}{x} \newline(C) 12x1x \frac{1}{2 \sqrt{x}} \cdot \frac{1}{x} \newline(D) xln(x)2+1x \frac{\sqrt{x} \ln (x)}{2}+\frac{1}{\sqrt{x}}

Full solution

Q. Let h(x)=xln(x) h(x)=\sqrt{x} \ln (x) .\newlineFind h(x) h^{\prime}(x) .\newlineChoose 11 answer:\newline(A) ln(x)2x+1x \frac{\ln (x)}{2 \sqrt{x}}+\frac{1}{\sqrt{x}} \newline(B) 12x+1x \frac{1}{2 \sqrt{x}}+\frac{1}{x} \newline(C) 12x1x \frac{1}{2 \sqrt{x}} \cdot \frac{1}{x} \newline(D) xln(x)2+1x \frac{\sqrt{x} \ln (x)}{2}+\frac{1}{\sqrt{x}}
  1. Define Functions: The product rule states that (fg)=fg+fg (fg)' = f'g + fg' . Let f(x)=x f(x) = \sqrt{x} and g(x)=ln(x) g(x) = \ln(x) . We need to find f(x) f'(x) and g(x) g'(x) .
  2. Find f(x)f'(x): Differentiate f(x)=xf(x) = \sqrt{x}. We can write x\sqrt{x} as x(1/2)x^{(1/2)} and use the power rule. f(x)=(12)x(1/2)f'(x) = (\frac{1}{2})x^{(-1/2)}.
  3. Find g(x)g'(x): Differentiate g(x)=ln(x)g(x) = \ln(x). The derivative of ln(x)\ln(x) is 1x\frac{1}{x}. So, g(x)=1xg'(x) = \frac{1}{x}.
  4. Apply Product Rule: Now apply the product rule: h(x)=f(x)g(x)+f(x)g(x)h'(x) = f'(x)g(x) + f(x)g'(x). Plug in the derivatives we found: h(x)=(12)x(12)ln(x)+x(12)(1x)h'(x) = (\frac{1}{2})x^{(-\frac{1}{2})}\ln(x) + x^{(\frac{1}{2})}(\frac{1}{x}).
  5. Simplify Expression: Simplify the expression: h(x)=(12)x(12)ln(x)+(12)x(12)h'(x) = (\frac{1}{2})x^{(-\frac{1}{2})}\ln(x) + (\frac{1}{2})x^{(-\frac{1}{2})}. This is because x(12)(1x)=x(12)x^{(\frac{1}{2})} \cdot (\frac{1}{x}) = x^{(-\frac{1}{2})}.

More problems from Multiplication with rational exponents