Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Let
h
(
x
)
=
x
ln
(
x
)
h(x)=\sqrt{x} \ln (x)
h
(
x
)
=
x
ln
(
x
)
.
\newline
Find
h
′
(
x
)
h^{\prime}(x)
h
′
(
x
)
.
\newline
Choose
1
1
1
answer:
\newline
(A)
ln
(
x
)
2
x
+
1
x
\frac{\ln (x)}{2 \sqrt{x}}+\frac{1}{\sqrt{x}}
2
x
l
n
(
x
)
+
x
1
\newline
(B)
1
2
x
+
1
x
\frac{1}{2 \sqrt{x}}+\frac{1}{x}
2
x
1
+
x
1
\newline
(C)
1
2
x
⋅
1
x
\frac{1}{2 \sqrt{x}} \cdot \frac{1}{x}
2
x
1
⋅
x
1
\newline
(D)
x
ln
(
x
)
2
+
1
x
\frac{\sqrt{x} \ln (x)}{2}+\frac{1}{\sqrt{x}}
2
x
l
n
(
x
)
+
x
1
View step-by-step help
Home
Math Problems
Algebra 1
Multiplication with rational exponents
Full solution
Q.
Let
h
(
x
)
=
x
ln
(
x
)
h(x)=\sqrt{x} \ln (x)
h
(
x
)
=
x
ln
(
x
)
.
\newline
Find
h
′
(
x
)
h^{\prime}(x)
h
′
(
x
)
.
\newline
Choose
1
1
1
answer:
\newline
(A)
ln
(
x
)
2
x
+
1
x
\frac{\ln (x)}{2 \sqrt{x}}+\frac{1}{\sqrt{x}}
2
x
l
n
(
x
)
+
x
1
\newline
(B)
1
2
x
+
1
x
\frac{1}{2 \sqrt{x}}+\frac{1}{x}
2
x
1
+
x
1
\newline
(C)
1
2
x
⋅
1
x
\frac{1}{2 \sqrt{x}} \cdot \frac{1}{x}
2
x
1
⋅
x
1
\newline
(D)
x
ln
(
x
)
2
+
1
x
\frac{\sqrt{x} \ln (x)}{2}+\frac{1}{\sqrt{x}}
2
x
l
n
(
x
)
+
x
1
Define Functions:
The product rule states that
(
f
g
)
′
=
f
′
g
+
f
g
′
(fg)' = f'g + fg'
(
f
g
)
′
=
f
′
g
+
f
g
′
. Let
f
(
x
)
=
x
f(x) = \sqrt{x}
f
(
x
)
=
x
and
g
(
x
)
=
ln
(
x
)
g(x) = \ln(x)
g
(
x
)
=
ln
(
x
)
. We need to find
f
′
(
x
)
f'(x)
f
′
(
x
)
and
g
′
(
x
)
g'(x)
g
′
(
x
)
.
Find
f
′
(
x
)
f'(x)
f
′
(
x
)
:
Differentiate
f
(
x
)
=
x
f(x) = \sqrt{x}
f
(
x
)
=
x
. We can write
x
\sqrt{x}
x
as
x
(
1
/
2
)
x^{(1/2)}
x
(
1/2
)
and use the power rule.
f
′
(
x
)
=
(
1
2
)
x
(
−
1
/
2
)
f'(x) = (\frac{1}{2})x^{(-1/2)}
f
′
(
x
)
=
(
2
1
)
x
(
−
1/2
)
.
Find
g
′
(
x
)
g'(x)
g
′
(
x
)
:
Differentiate
g
(
x
)
=
ln
(
x
)
g(x) = \ln(x)
g
(
x
)
=
ln
(
x
)
. The derivative of
ln
(
x
)
\ln(x)
ln
(
x
)
is
1
x
\frac{1}{x}
x
1
. So,
g
′
(
x
)
=
1
x
g'(x) = \frac{1}{x}
g
′
(
x
)
=
x
1
.
Apply Product Rule:
Now apply the product rule:
h
′
(
x
)
=
f
′
(
x
)
g
(
x
)
+
f
(
x
)
g
′
(
x
)
h'(x) = f'(x)g(x) + f(x)g'(x)
h
′
(
x
)
=
f
′
(
x
)
g
(
x
)
+
f
(
x
)
g
′
(
x
)
. Plug in the derivatives we found:
h
′
(
x
)
=
(
1
2
)
x
(
−
1
2
)
ln
(
x
)
+
x
(
1
2
)
(
1
x
)
h'(x) = (\frac{1}{2})x^{(-\frac{1}{2})}\ln(x) + x^{(\frac{1}{2})}(\frac{1}{x})
h
′
(
x
)
=
(
2
1
)
x
(
−
2
1
)
ln
(
x
)
+
x
(
2
1
)
(
x
1
)
.
Simplify Expression:
Simplify the expression:
h
′
(
x
)
=
(
1
2
)
x
(
−
1
2
)
ln
(
x
)
+
(
1
2
)
x
(
−
1
2
)
h'(x) = (\frac{1}{2})x^{(-\frac{1}{2})}\ln(x) + (\frac{1}{2})x^{(-\frac{1}{2})}
h
′
(
x
)
=
(
2
1
)
x
(
−
2
1
)
ln
(
x
)
+
(
2
1
)
x
(
−
2
1
)
. This is because
x
(
1
2
)
⋅
(
1
x
)
=
x
(
−
1
2
)
x^{(\frac{1}{2})} \cdot (\frac{1}{x}) = x^{(-\frac{1}{2})}
x
(
2
1
)
⋅
(
x
1
)
=
x
(
−
2
1
)
.
More problems from Multiplication with rational exponents
Question
Let
h
(
x
)
=
log
2
(
x
)
h(x)=\log _{2}(x)
h
(
x
)
=
lo
g
2
(
x
)
.
\newline
Can we use the mean value theorem to say the equation
h
′
(
x
)
=
1
h^{\prime}(x)=1
h
′
(
x
)
=
1
has a solution where
1
<
x
<
2
1<x<2
1
<
x
<
2
?
\newline
Choose
1
1
1
answer:
\newline
(A) No, since the function is not differentiable on that interval.
\newline
(B) No, since the average rate of change of
h
h
h
over the interval
1
≤
x
≤
2
1 \leq x \leq 2
1
≤
x
≤
2
isn't equal to
1
1
1
.
\newline
(C) Yes, both conditions for using the mean value theorem have been met.
Get tutor help
Posted 9 months ago
Question
What is the sign of
39
11
13
+
(
−
41
1
13
)
?
39 \frac{11}{13}+\left(-41 \frac{1}{13}\right) \text { ? }
39
13
11
+
(
−
41
13
1
)
?
\newline
Choose
1
1
1
answer:
\newline
(A) Positive
\newline
(B) Negative
\newline
(C) Neither positive nor negative-the sum is zero.
Get tutor help
Posted 9 months ago
Question
What is the sign of
−
1042
+
1042
?
-1042+1042 ?
−
1042
+
1042
?
\newline
Choose
1
1
1
answer:
\newline
(A) Positive
\newline
(B) Negative
\newline
(C) Neither positive nor negative-the sum is zero.
Get tutor help
Posted 9 months ago
Question
What is the sign of
−
18
9
17
+
(
−
18
9
17
)
-18 \frac{9}{17}+\left(-18 \frac{9}{17}\right)
−
18
17
9
+
(
−
18
17
9
)
?
\newline
Choose
1
1
1
answer:
\newline
(A) Positive
\newline
(B) Negative
\newline
(C) Neither positive nor negative-the sum is zero.
Get tutor help
Posted 9 months ago
Question
What is the sign of
23
45
+
(
−
23
45
)
?
\frac{23}{45}+\left(-\frac{23}{45}\right) ?
45
23
+
(
−
45
23
)
?
\newline
Choose
1
1
1
answer:
\newline
(A) Positive
\newline
(B) Negative
\newline
(C) Neither positive nor negative-the sum is zero.
Get tutor help
Posted 9 months ago
Question
What is the sign of
45
+
(
−
38
)
45+(-38)
45
+
(
−
38
)
?
\newline
Choose
1
1
1
answer:
\newline
(A) Positive
\newline
(B) Negative
\newline
(C) Neither positive nor negative-the sum is zero.
Get tutor help
Posted 9 months ago
Question
What is the sign of
−
49.8
+
61.2
-49.8+61.2
−
49.8
+
61.2
?
\newline
Choose
1
1
1
answer:
\newline
(A) Positive
\newline
(B) Negative
\newline
(C) Neither positive nor negative-the sum is zero.
Get tutor help
Posted 9 months ago
Question
What is the sign of
−
1.69
+
(
−
1.69
)
?
-1.69+(-1.69) ?
−
1.69
+
(
−
1.69
)?
\newline
Choose
1
1
1
answer:
\newline
(A) Positive
\newline
(B) Negative
\newline
(C) Neither positive nor negative-the sum is zero.
Get tutor help
Posted 9 months ago
Question
What is the sign of
37
+
(
−
37
)
37+(-37)
37
+
(
−
37
)
?
\newline
Choose
1
1
1
answer:
\newline
(A) Positive
\newline
(B) Negative
\newline
(C) Neither positive nor negative-the sum is zero.
Get tutor help
Posted 9 months ago
Question
g
(
x
)
=
2
x
−
9
g
′
(
x
)
=
?
\begin{array}{l} g(x)=\sqrt{2 x-9} \\ g^{\prime}(x)=? \end{array}
g
(
x
)
=
2
x
−
9
g
′
(
x
)
=
?
\newline
Choose
1
1
1
answer:
\newline
(A)
2
x
−
9
2
\frac{\sqrt{2 x-9}}{2}
2
2
x
−
9
\newline
(B)
1
2
x
−
9
\frac{1}{\sqrt{2 x-9}}
2
x
−
9
1
\newline
(C)
1
2
2
x
−
9
\frac{1}{2 \sqrt{2 x-9}}
2
2
x
−
9
1
\newline
(D)
1
x
\frac{1}{\sqrt{x}}
x
1
Get tutor help
Posted 9 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant