Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
h(x)=sqrtxln(x).
Find 
h^(')(x).
Choose 1 answer:
(A) 
(1)/(2sqrtx)+(1)/(x)
(B) 
(ln(x))/(2sqrtx)+(1)/(sqrtx)
(C) 
(1)/(2sqrtx)*(1)/(x)
(D) 
(sqrtxln(x))/(2)+(1)/(sqrtx)

Let h(x)=xln(x) h(x)=\sqrt{x} \ln (x) .\newlineFind h(x) h^{\prime}(x) .\newlineChoose 11 answer:\newline(A) 12x+1x \frac{1}{2 \sqrt{x}}+\frac{1}{x} \newline(B) ln(x)2x+1x \frac{\ln (x)}{2 \sqrt{x}}+\frac{1}{\sqrt{x}} \newline(C) 12x1x \frac{1}{2 \sqrt{x}} \cdot \frac{1}{x} \newline(D) xln(x)2+1x \frac{\sqrt{x} \ln (x)}{2}+\frac{1}{\sqrt{x}}

Full solution

Q. Let h(x)=xln(x) h(x)=\sqrt{x} \ln (x) .\newlineFind h(x) h^{\prime}(x) .\newlineChoose 11 answer:\newline(A) 12x+1x \frac{1}{2 \sqrt{x}}+\frac{1}{x} \newline(B) ln(x)2x+1x \frac{\ln (x)}{2 \sqrt{x}}+\frac{1}{\sqrt{x}} \newline(C) 12x1x \frac{1}{2 \sqrt{x}} \cdot \frac{1}{x} \newline(D) xln(x)2+1x \frac{\sqrt{x} \ln (x)}{2}+\frac{1}{\sqrt{x}}
  1. Differentiate x\sqrt{x}: Differentiate x\sqrt{x} with respect to xx to get 12x12\frac{1}{2}x^{-\frac{1}{2}}.\newlineDifferentiate ln(x)\ln(x) with respect to xx to get 1x\frac{1}{x}.
  2. Differentiate ln(x)\ln(x): Now apply the product rule: h(x)=(x)(ln(x))+(x)(ln(x))h'(x) = (\sqrt{x})'(\ln(x)) + (\sqrt{x})(\ln(x))'. This gives us h(x)=(12)x(12)ln(x)+(x)(1x)h'(x) = (\frac{1}{2})x^{(-\frac{1}{2})}\ln(x) + (\sqrt{x})(\frac{1}{x}).
  3. Apply product rule: Simplify the expression: h(x)=(12)x(12)ln(x)+12xh'(x) = (\frac{1}{2})x^{(-\frac{1}{2})}\ln(x) + \frac{1}{2\sqrt{x}}. Oops, there's a mistake here. The second term should be 12x\frac{1}{2\sqrt{x}} without the ln(x)\ln(x).

More problems from Multiplication with rational exponents