Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
g(x)=-8sin((3x)/(2)+1).
Find 
g^('')(x).
Choose 1 answer:
(A) 
8((3x)/(2)+1)^(2)*sin((3x)/(2)+1)
(B) 
(32)/(9)sin((3x)/(2)+1)
(C) 
18 sin((3x)/(2)+1)
(D) 
-12 cos((3x)/(2)+1)

Let g(x)=8sin(3x2+1) g(x)=-8 \sin \left(\frac{3 x}{2}+1\right) .\newlineFind g(x) g^{\prime \prime}(x) .\newlineChoose 11 answer:\newline(A) 8(3x2+1)2sin(3x2+1) 8\left(\frac{3 x}{2}+1\right)^{2} \cdot \sin \left(\frac{3 x}{2}+1\right) \newline(B) 329sin(3x2+1) \frac{32}{9} \sin \left(\frac{3 x}{2}+1\right) \newline(C) 18sin(3x2+1) 18 \sin \left(\frac{3 x}{2}+1\right) \newline(D) 12cos(3x2+1) -12 \cos \left(\frac{3 x}{2}+1\right)

Full solution

Q. Let g(x)=8sin(3x2+1) g(x)=-8 \sin \left(\frac{3 x}{2}+1\right) .\newlineFind g(x) g^{\prime \prime}(x) .\newlineChoose 11 answer:\newline(A) 8(3x2+1)2sin(3x2+1) 8\left(\frac{3 x}{2}+1\right)^{2} \cdot \sin \left(\frac{3 x}{2}+1\right) \newline(B) 329sin(3x2+1) \frac{32}{9} \sin \left(\frac{3 x}{2}+1\right) \newline(C) 18sin(3x2+1) 18 \sin \left(\frac{3 x}{2}+1\right) \newline(D) 12cos(3x2+1) -12 \cos \left(\frac{3 x}{2}+1\right)
  1. Find First Derivative: Differentiate g(x)g(x) with respect to xx to find the first derivative g(x)g'(x).
    g(x)=8sin(3x2+1)g(x) = -8\sin\left(\frac{3x}{2}+1\right)
    Using the chain rule, the derivative of sin(u)\sin(u) with respect to xx is cos(u)dudx\cos(u) \cdot \frac{du}{dx}, where u=3x2+1u = \frac{3x}{2} + 1.
    g(x)=8cos(3x2+1)ddx(3x2+1)g'(x) = -8 \cdot \cos\left(\frac{3x}{2} + 1\right) \cdot \frac{d}{dx}\left(\frac{3x}{2} + 1\right)
    The derivative of 3x2+1\frac{3x}{2} + 1 with respect to xx is xx11.
    xx22
    xx33
  2. Calculate g(x)g'(x): Differentiate g(x)g'(x) to find the second derivative g(x)g''(x).
    g(x)=12cos(3x2+1)g'(x) = -12 \cdot \cos\left(\frac{3x}{2} + 1\right)
    Using the chain rule again, the derivative of cos(u)\cos(u) with respect to xx is sin(u)dudx-\sin(u) \cdot \frac{du}{dx}, where u=3x2+1u = \frac{3x}{2} + 1.
    g(x)=12(sin(3x2+1))ddx(3x2+1)g''(x) = -12 \cdot (-\sin(\frac{3x}{2} + 1)) \cdot \frac{d}{dx}(\frac{3x}{2} + 1)
    The derivative of 3x2+1\frac{3x}{2} + 1 with respect to xx is g(x)g'(x)11.
    g(x)g'(x)22
    g(x)g'(x)33

More problems from Multiplication with rational exponents