Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
f(x)=(sqrtx)/(sin(x)).
Find 
f^(')(x).
Choose 1 answer:
(A) 
(1)/(2sqrtxcos(x))
(B) 
(cos(x))/(2sqrtx)
(C) 
(sin(x)-2x cos(x))/(2sqrtxsin^(2)(x))
(D) 
(sin(x)+2x cos(x))/(2sqrtxsin^(2)(x))

Let f(x)=xsin(x) f(x)=\frac{\sqrt{x}}{\sin (x)} .\newlineFind f(x) f^{\prime}(x) .\newlineChoose 11 answer:\newline(A) 12xcos(x) \frac{1}{2 \sqrt{x} \cos (x)} \newline(B) cos(x)2x \frac{\cos (x)}{2 \sqrt{x}} \newline(C) sin(x)2xcos(x)2xsin2(x) \frac{\sin (x)-2 x \cos (x)}{2 \sqrt{x} \sin ^{2}(x)} \newline(D) sin(x)+2xcos(x)2xsin2(x) \frac{\sin (x)+2 x \cos (x)}{2 \sqrt{x} \sin ^{2}(x)}

Full solution

Q. Let f(x)=xsin(x) f(x)=\frac{\sqrt{x}}{\sin (x)} .\newlineFind f(x) f^{\prime}(x) .\newlineChoose 11 answer:\newline(A) 12xcos(x) \frac{1}{2 \sqrt{x} \cos (x)} \newline(B) cos(x)2x \frac{\cos (x)}{2 \sqrt{x}} \newline(C) sin(x)2xcos(x)2xsin2(x) \frac{\sin (x)-2 x \cos (x)}{2 \sqrt{x} \sin ^{2}(x)} \newline(D) sin(x)+2xcos(x)2xsin2(x) \frac{\sin (x)+2 x \cos (x)}{2 \sqrt{x} \sin ^{2}(x)}
  1. Identify Function: Identify the function to differentiate. f(x)=xsin(x)f(x) = \frac{\sqrt{x}}{\sin(x)} is a quotient of two functions, where the numerator is x\sqrt{x} and the denominator is sin(x)\sin(x).
  2. Apply Quotient Rule: Apply the quotient rule for differentiation.\newlineThe quotient rule states that (uv)=uvuvv2(\frac{u}{v})' = \frac{u'v - uv'}{v^2}, where uu is the numerator and vv is the denominator.\newlineLet u=xu = \sqrt{x} and v=sin(x)v = \sin(x). We need to find uu' and vv'.
  3. Differentiate uu and vv: Differentiate uu and vv.
    u=x=x1/2u = \sqrt{x} = x^{1/2}, so u=(1/2)x1/2=1/(2x)u' = (1/2)x^{-1/2} = 1/(2\sqrt{x}).
    v=sin(x)v = \sin(x), so v=cos(x)v' = \cos(x).
  4. Apply Derivatives: Apply the derivatives to the quotient rule.\newlinef(x)=uvuvv2f'(x) = \frac{u'v - uv'}{v^2}\newline = 12xsin(x)xcos(x)sin2(x)\frac{\frac{1}{2\sqrt{x}} \cdot \sin(x) - \sqrt{x} \cdot \cos(x)}{\sin^2(x)}\newline = sin(x)2xxcos(x)xsin2(x)\frac{\frac{\sin(x)}{2\sqrt{x}} - \frac{x \cdot \cos(x)}{\sqrt{x}}}{\sin^2(x)}\newline = sin(x)2xcos(x)2xsin2(x)\frac{\sin(x) - 2x \cdot \cos(x)}{2\sqrt{x} \cdot \sin^2(x)}
  5. Choose Correct Answer: Choose the correct answer.\newlineThe correct answer is (C) (sin(x)2xcos(x))/(2xsin2(x))(\sin(x) - 2x \cdot \cos(x)) / (2\sqrt{x} \cdot \sin^2(x)).

More problems from Multiplication with rational exponents