Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
f(x)=(3)/(x).
Select the correct description of the one-sided limits of 
f at 
x=0.
Choose 1 answer:
(A) 
lim_(x rarr0^(+))f(x)=+oo and 
lim_(x rarr0^(-))f(x)=+oo
(B) 
lim_(x rarr0^(+))f(x)=+oo and 
lim_(x rarr0^(-))f(x)=-oo
(C) 
lim_(x rarr0^(+))f(x)=-oo and 
lim_(x rarr0^(-))f(x)=+oo
(D) 
lim_(x rarr0^(+))f(x)=-oo and 
lim_(x rarr0^(-))f(x)=-oo

Let f(x)=3x f(x)=\frac{3}{x} .\newlineSelect the correct description of the one-sided limits of f f at x=0 x=0 .\newlineChoose 11 answer:\newline(A) limx0+f(x)=+ \lim _{x \rightarrow 0^{+}} f(x)=+\infty and limx0f(x)=+ \lim _{x \rightarrow 0^{-}} f(x)=+\infty \newline(B) limx0+f(x)=+ \lim _{x \rightarrow 0^{+}} f(x)=+\infty and limx0f(x)= \lim _{x \rightarrow 0^{-}} f(x)=-\infty \newline(C) limx0+f(x)= \lim _{x \rightarrow 0^{+}} f(x)=-\infty and limx0f(x)=+ \lim _{x \rightarrow 0^{-}} f(x)=+\infty \newline(D) limx0+f(x)= \lim _{x \rightarrow 0^{+}} f(x)=-\infty and limx0f(x)= \lim _{x \rightarrow 0^{-}} f(x)=-\infty

Full solution

Q. Let f(x)=3x f(x)=\frac{3}{x} .\newlineSelect the correct description of the one-sided limits of f f at x=0 x=0 .\newlineChoose 11 answer:\newline(A) limx0+f(x)=+ \lim _{x \rightarrow 0^{+}} f(x)=+\infty and limx0f(x)=+ \lim _{x \rightarrow 0^{-}} f(x)=+\infty \newline(B) limx0+f(x)=+ \lim _{x \rightarrow 0^{+}} f(x)=+\infty and limx0f(x)= \lim _{x \rightarrow 0^{-}} f(x)=-\infty \newline(C) limx0+f(x)= \lim _{x \rightarrow 0^{+}} f(x)=-\infty and limx0f(x)=+ \lim _{x \rightarrow 0^{-}} f(x)=+\infty \newline(D) limx0+f(x)= \lim _{x \rightarrow 0^{+}} f(x)=-\infty and limx0f(x)= \lim _{x \rightarrow 0^{-}} f(x)=-\infty
  1. Evaluate positive limit: Evaluate the one-sided limit of f(x)=3xf(x) = \frac{3}{x} as xx approaches 00 from the positive side (x0+x \to 0^+).\newlineAs xx approaches 00 from the positive side, the value of 1x\frac{1}{x} becomes very large because we are dividing a constant by a very small positive number. Therefore, the limit is positive infinity.\newlinelimx0+f(x)=limx0+(3x)=+\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left(\frac{3}{x}\right) = +\infty
  2. Evaluate negative limit: Evaluate the one-sided limit of f(x)=3xf(x) = \frac{3}{x} as xx approaches 00 from the negative side (x0x \to 0^-).\newlineAs xx approaches 00 from the negative side, the value of 1x\frac{1}{x} becomes very large in the negative direction because we are dividing a constant by a very small negative number. Therefore, the limit is negative infinity.\newlinelimx0f(x)=limx0(3x)=\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \left(\frac{3}{x}\right) = -\infty
  3. Combine results: Combine the results from the previous steps to select the correct description of the one-sided limits of ff at x=0x=0. From step 22, we have limx0+f(x)=+\lim_{x \to 0^{+}} f(x) = +\infty. From step 33, we have limx0f(x)=\lim_{x \to 0^{-}} f(x) = -\infty. Therefore, the correct answer is (B) limx0+f(x)=+\lim_{x \to 0^{+}} f(x) = +\infty and limx0f(x)=\lim_{x \to 0^{-}} f(x) = -\infty.

More problems from Find derivatives of using multiple formulae