Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let f(x)=2x+3f(x)=2x+3 and g(x)=x24xg(x)=x^{2}-4x.\newlineWhich of the following is equivalent to g(f(x))g(f(x))?\newlineChoose 11 answer:\newline(A) 4x2+4x34x^{2}+4x-3\newline(B) 4x28x34x^{2}-8x-3\newline(C) 4x2+4x+214x^{2}+4x+21\newline(D) 2x28x+32x^{2}-8x+3

Full solution

Q. Let f(x)=2x+3f(x)=2x+3 and g(x)=x24xg(x)=x^{2}-4x.\newlineWhich of the following is equivalent to g(f(x))g(f(x))?\newlineChoose 11 answer:\newline(A) 4x2+4x34x^{2}+4x-3\newline(B) 4x28x34x^{2}-8x-3\newline(C) 4x2+4x+214x^{2}+4x+21\newline(D) 2x28x+32x^{2}-8x+3
  1. Substitute f(x)f(x) into g(x)g(x): We need to find g(f(x))g(f(x)). To do this, we will substitute the expression for f(x)f(x) into g(x)g(x). The function f(x)f(x) is given by 2x+32x+3, so we will replace every xx in g(x)g(x) with 2x+32x+3.
  2. Expand (2x+3)2(2x+3)^2: The function g(x)g(x) is given by x24xx^2 - 4x. Substituting f(x)f(x) into g(x)g(x), we get g(f(x))=(2x+3)24(2x+3)g(f(x)) = (2x+3)^2 - 4(2x+3).
  3. Distribute 4-4: Now we need to expand (2x+3)2(2x+3)^2. This is done by squaring both terms and the cross term: (2x+3)(2x+3)=4x2+6x+6x+9=4x2+12x+9(2x+3)(2x+3) = 4x^2 + 6x + 6x + 9 = 4x^2 + 12x + 9.
  4. Combine terms: Next, we distribute the 4-4 in 4(2x+3)-4(2x+3) to get 8x12-8x - 12.
  5. Simplify expression: Now we combine the results from Step 33 and Step 44 to get the full expression for g(f(x))g(f(x)): 4x2+12x+98x124x^2 + 12x + 9 - 8x - 12.
  6. Simplify expression: Now we combine the results from Step 33 and Step 44 to get the full expression for g(f(x))g(f(x)): 4x2+12x+98x124x^2 + 12x + 9 - 8x - 12. Simplify the expression by combining like terms: 4x2+12x8x+912=4x2+4x34x^2 + 12x - 8x + 9 - 12 = 4x^2 + 4x - 3.

More problems from Add and subtract integers: word problems