Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
f(x)=-(1)/((x-1)^(2)).
Select the correct description of the one-sided limits of 
f at 
x=1.
Choose 1 answer:
(A)

{:[lim_(x rarr1^(+))f(x)=+oo" and "],[lim_(x rarr1^(-))f(x)=+oo]:}
(B)

{:[lim_(x rarr1^(+))f(x)=+oo" and "],[lim_(x rarr1^(-))f(x)=-oo]:}
(C)

{:[lim_(x rarr1^(+))f(x)=-oo" and "],[lim_(x rarr1^(-))f(x)=+oo]:}
(D)

{:[lim_(x rarr1^(+))f(x)=-oo" and "],[lim_(x rarr1^(-))f(x)=-oo]:}

Let f(x)=1(x1)2 f(x)=-\frac{1}{(x-1)^{2}} .\newlineSelect the correct description of the one-sided limits of f f at x=1 x=1 .\newlineChoose 11 answer:\newline(A)\newlinelimx1+f(x)=+ and limx1f(x)=+ \begin{array}{l} \lim _{x \rightarrow 1^{+}} f(x)=+\infty \text { and } \\ \lim _{x \rightarrow 1^{-}} f(x)=+\infty \end{array} \newline(B)\newlinelimx1+f(x)=+ and limx1f(x)= \begin{array}{l} \lim _{x \rightarrow 1^{+}} f(x)=+\infty \text { and } \\ \lim _{x \rightarrow 1^{-}} f(x)=-\infty \end{array} \newline(C)\newlinelimx1+f(x)= and limx1f(x)=+ \begin{array}{l} \lim _{x \rightarrow 1^{+}} f(x)=-\infty \text { and } \\ \lim _{x \rightarrow 1^{-}} f(x)=+\infty \end{array} \newline(D)\newlinelimx1+f(x)= and limx1f(x)= \begin{array}{l} \lim _{x \rightarrow 1^{+}} f(x)=-\infty \text { and } \\ \lim _{x \rightarrow 1^{-}} f(x)=-\infty \end{array}

Full solution

Q. Let f(x)=1(x1)2 f(x)=-\frac{1}{(x-1)^{2}} .\newlineSelect the correct description of the one-sided limits of f f at x=1 x=1 .\newlineChoose 11 answer:\newline(A)\newlinelimx1+f(x)=+ and limx1f(x)=+ \begin{array}{l} \lim _{x \rightarrow 1^{+}} f(x)=+\infty \text { and } \\ \lim _{x \rightarrow 1^{-}} f(x)=+\infty \end{array} \newline(B)\newlinelimx1+f(x)=+ and limx1f(x)= \begin{array}{l} \lim _{x \rightarrow 1^{+}} f(x)=+\infty \text { and } \\ \lim _{x \rightarrow 1^{-}} f(x)=-\infty \end{array} \newline(C)\newlinelimx1+f(x)= and limx1f(x)=+ \begin{array}{l} \lim _{x \rightarrow 1^{+}} f(x)=-\infty \text { and } \\ \lim _{x \rightarrow 1^{-}} f(x)=+\infty \end{array} \newline(D)\newlinelimx1+f(x)= and limx1f(x)= \begin{array}{l} \lim _{x \rightarrow 1^{+}} f(x)=-\infty \text { and } \\ \lim _{x \rightarrow 1^{-}} f(x)=-\infty \end{array}
  1. Analyze behavior as xx approaches 11 from the right: Analyze the behavior of the function as xx approaches 11 from the right (x1+x \to 1^+).
  2. Calculate right-hand limit as xx approaches 11: Calculate the right-hand limit of f(x)f(x) as xx approaches 11.
  3. Analyze behavior as xx approaches 11 from the left: Analyze the behavior of the function as xx approaches 11 from the left (x1x \to 1^-).
  4. Calculate left-hand limit as xx approaches 11: Calculate the left-hand limit of f(x)f(x) as xx approaches 11.

More problems from Find derivatives of sine and cosine functions