Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Kofi tried to solve the differential equation 
(dy)/(dx)=3x^(-2)e^(-y). This is his work:

(dy)/(dx)=3x^(-2)e^(-y)
Step 1: 
quad inte^(y)dy=int3x^(-2)dx
Step 2: 
quade^(y)=-(3)/(x)
Step 3: 
quad ln(e^(y))=ln(-(3)/(x))
Step 4: 
quad y=ln(-(3)/(x))+C
Is Kofi's work correct? If not, what is his mistake?
Choose 1 answer:
(A) Kofi's work is correct.
(B) Step 1 is incorrect. The separation of variables wasn't done correctly.
(C) Step 2 is incorrect. The right-hand side of the equation should be 
-(3)/(x)+C.
(D) Step 3 is incorrect. Kofi should not have a negative symbol inside of a natural logarithm.

Kofi tried to solve the differential equation dydx=3x2ey \frac{d y}{d x}=3 x^{-2} e^{-y} . This is his work:\newlinedydx=3x2ey \frac{d y}{d x}=3 x^{-2} e^{-y} \newlineStep 11: eydy=3x2dx \quad \int e^{y} d y=\int 3 x^{-2} d x \newlineStep 22: ey=3x \quad e^{y}=-\frac{3}{x} \newlineStep 33: ln(ey)=ln(3x) \quad \ln \left(e^{y}\right)=\ln \left(-\frac{3}{x}\right) \newlineStep 44: y=ln(3x)+C \quad y=\ln \left(-\frac{3}{x}\right)+C \newlineIs Kofi's work correct? If not, what is his mistake?\newlineChoose 11 answer:\newline(A) Kofi's work is correct.\newline(B) Step 11 is incorrect. The separation of variables wasn't done correctly.\newline(C) Step 22 is incorrect. The right-hand side of the equation should be 3x+C -\frac{3}{x}+C .\newline(D) Step 33 is incorrect. Kofi should not have a negative symbol inside of a natural logarithm.

Full solution

Q. Kofi tried to solve the differential equation dydx=3x2ey \frac{d y}{d x}=3 x^{-2} e^{-y} . This is his work:\newlinedydx=3x2ey \frac{d y}{d x}=3 x^{-2} e^{-y} \newlineStep 11: eydy=3x2dx \quad \int e^{y} d y=\int 3 x^{-2} d x \newlineStep 22: ey=3x \quad e^{y}=-\frac{3}{x} \newlineStep 33: ln(ey)=ln(3x) \quad \ln \left(e^{y}\right)=\ln \left(-\frac{3}{x}\right) \newlineStep 44: y=ln(3x)+C \quad y=\ln \left(-\frac{3}{x}\right)+C \newlineIs Kofi's work correct? If not, what is his mistake?\newlineChoose 11 answer:\newline(A) Kofi's work is correct.\newline(B) Step 11 is incorrect. The separation of variables wasn't done correctly.\newline(C) Step 22 is incorrect. The right-hand side of the equation should be 3x+C -\frac{3}{x}+C .\newline(D) Step 33 is incorrect. Kofi should not have a negative symbol inside of a natural logarithm.
  1. Separate variables: Separate variables.\newlineKofi attempts to separate the variables by multiplying both sides by ey e^y and integrating. The correct separation should be:\newlineeydy=3x2dx e^y \, dy = 3x^{-2} \, dx \newlineThen integrate both sides:\newlineeydy=3x2dx \int e^y \, dy = \int 3x^{-2} \, dx
  2. Integrate both sides: Integrate both sides.\newlineThe integration of the left side is:\newlineeydy=ey \int e^y \, dy = e^y \newlineThe integration of the right side is:\newline3x2dx=3x1+C \int 3x^{-2} \, dx = -3x^{-1} + C \newlinewhere C C is the constant of integration.
  3. Solve for y: Solve for y.\newlineNow we have:\newlineey=3x1+C e^y = -3x^{-1} + C \newlineTaking the natural logarithm of both sides gives:\newliney=ln(3x1+C) y = \ln(-3x^{-1} + C) \newlineHowever, the natural logarithm is not defined for negative numbers, and 3x1 -3x^{-1} is negative for positive x x . Therefore, the constant C C must be included inside the logarithm to ensure that the argument is positive for the domain of x x .

More problems from Find derivatives of inverse trigonometric functions